云计算中的虚拟机使用分析

Yi Han, Jeffrey Chan, C. Leckie
{"title":"云计算中的虚拟机使用分析","authors":"Yi Han, Jeffrey Chan, C. Leckie","doi":"10.1109/SERVICES.2013.9","DOIUrl":null,"url":null,"abstract":"Analysing and modelling the characteristics of virtual machine (VM) usage gives cloud providers crucial information when dimensioning cloud infrastructure and designing appropriate allocation policies. In addition, administrators can use these models to build a normal behaviour profile of job requests, in order to differentiate malicious and normal activities. Finally, it allows researchers to design more accurate simulation environments. An open challenge is to empirically develop and verify an accurate model of VM usage for users in these applications. In this paper, we study the VM usage in the popular Amazon EC2 and Windows Azure cloud platforms, in terms of the VM request arrival and departure processes, and the number of live VMs in the system. We find that both the VM request arrival and departure processes exhibit self-similarity and follow the power law distribution. Our analysis also shows that the autoregressive integrated moving average (ARIMA) model can be used to fit and forecast the VM demands, which is an important requirement for managing the workload in cloud services.","PeriodicalId":169370,"journal":{"name":"2013 IEEE Ninth World Congress on Services","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Analysing Virtual Machine Usage in Cloud Computing\",\"authors\":\"Yi Han, Jeffrey Chan, C. Leckie\",\"doi\":\"10.1109/SERVICES.2013.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analysing and modelling the characteristics of virtual machine (VM) usage gives cloud providers crucial information when dimensioning cloud infrastructure and designing appropriate allocation policies. In addition, administrators can use these models to build a normal behaviour profile of job requests, in order to differentiate malicious and normal activities. Finally, it allows researchers to design more accurate simulation environments. An open challenge is to empirically develop and verify an accurate model of VM usage for users in these applications. In this paper, we study the VM usage in the popular Amazon EC2 and Windows Azure cloud platforms, in terms of the VM request arrival and departure processes, and the number of live VMs in the system. We find that both the VM request arrival and departure processes exhibit self-similarity and follow the power law distribution. Our analysis also shows that the autoregressive integrated moving average (ARIMA) model can be used to fit and forecast the VM demands, which is an important requirement for managing the workload in cloud services.\",\"PeriodicalId\":169370,\"journal\":{\"name\":\"2013 IEEE Ninth World Congress on Services\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Ninth World Congress on Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SERVICES.2013.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Ninth World Congress on Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERVICES.2013.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

对虚拟机(VM)使用的特征进行分析和建模,可以为云提供商在确定云基础架构的维度和设计适当的分配策略时提供关键信息。此外,管理员可以使用这些模型构建作业请求的正常行为配置文件,以便区分恶意活动和正常活动。最后,它允许研究人员设计更精确的模拟环境。一个开放的挑战是经验地为这些应用程序中的用户开发和验证虚拟机使用的准确模型。在本文中,我们研究了流行的Amazon EC2和Windows Azure云平台上的VM使用情况,包括VM请求到达和离开过程,以及系统中活动VM的数量。研究发现,虚拟机请求到达和离开过程均具有自相似性,且服从幂律分布。我们的分析还表明,自回归集成移动平均(ARIMA)模型可用于拟合和预测虚拟机需求,这是管理云服务工作负载的重要需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysing Virtual Machine Usage in Cloud Computing
Analysing and modelling the characteristics of virtual machine (VM) usage gives cloud providers crucial information when dimensioning cloud infrastructure and designing appropriate allocation policies. In addition, administrators can use these models to build a normal behaviour profile of job requests, in order to differentiate malicious and normal activities. Finally, it allows researchers to design more accurate simulation environments. An open challenge is to empirically develop and verify an accurate model of VM usage for users in these applications. In this paper, we study the VM usage in the popular Amazon EC2 and Windows Azure cloud platforms, in terms of the VM request arrival and departure processes, and the number of live VMs in the system. We find that both the VM request arrival and departure processes exhibit self-similarity and follow the power law distribution. Our analysis also shows that the autoregressive integrated moving average (ARIMA) model can be used to fit and forecast the VM demands, which is an important requirement for managing the workload in cloud services.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Auditing Requirements for Implementing the Chinese Wall Model in the Service Cloud HRPaaS: A Handwriting Recognition Platform as a Service  Based on Middleware and the HTTP API Service Discovery Using Ontology Encoding Enhanced by Similarity of Information Content Simultaneously Supporting Privacy and Auditing in Cloud Computing Systems Bridging the GAP between Software Certification and Trusted Computing for Securing Cloud Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1