{"title":"保护声控设备免受激光攻击的深度学习方法","authors":"Vijay Srinivas Tida, Raghabendra Shah, X. Hei","doi":"10.4018/978-1-7998-7323-5.ch008","DOIUrl":null,"url":null,"abstract":"The laser-based audio signal injection can be used for attacking voice controllable systems. An attacker can aim an amplitude-modulated light at the microphone's aperture, and the signal injection acts as a remote voice-command attack on voice-controllable systems. Attackers are using vulnerabilities to steal things that are in the form of physical devices or the form of virtual using making orders, withdrawal of money, etc. Therefore, detection of these signals is important because almost every device can be attacked using these amplitude-modulated laser signals. In this project, the authors use deep learning to detect the incoming signals as normal voice commands or laser-based audio signals. Mel frequency cepstral coefficients (MFCC) are derived from the audio signals to classify the input audio signals. If the audio signals are identified as laser signals, the voice command can be disabled, and an alert can be displayed to the victim. The maximum accuracy of the machine learning model was 100%, and in the real world, it's around 95%.","PeriodicalId":137552,"journal":{"name":"Security, Data Analytics, and Energy-Aware Solutions in the IoT","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Approach for Protecting Voice-Controllable Devices From Laser Attacks\",\"authors\":\"Vijay Srinivas Tida, Raghabendra Shah, X. Hei\",\"doi\":\"10.4018/978-1-7998-7323-5.ch008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The laser-based audio signal injection can be used for attacking voice controllable systems. An attacker can aim an amplitude-modulated light at the microphone's aperture, and the signal injection acts as a remote voice-command attack on voice-controllable systems. Attackers are using vulnerabilities to steal things that are in the form of physical devices or the form of virtual using making orders, withdrawal of money, etc. Therefore, detection of these signals is important because almost every device can be attacked using these amplitude-modulated laser signals. In this project, the authors use deep learning to detect the incoming signals as normal voice commands or laser-based audio signals. Mel frequency cepstral coefficients (MFCC) are derived from the audio signals to classify the input audio signals. If the audio signals are identified as laser signals, the voice command can be disabled, and an alert can be displayed to the victim. The maximum accuracy of the machine learning model was 100%, and in the real world, it's around 95%.\",\"PeriodicalId\":137552,\"journal\":{\"name\":\"Security, Data Analytics, and Energy-Aware Solutions in the IoT\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Security, Data Analytics, and Energy-Aware Solutions in the IoT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-7998-7323-5.ch008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Security, Data Analytics, and Energy-Aware Solutions in the IoT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-7323-5.ch008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Learning Approach for Protecting Voice-Controllable Devices From Laser Attacks
The laser-based audio signal injection can be used for attacking voice controllable systems. An attacker can aim an amplitude-modulated light at the microphone's aperture, and the signal injection acts as a remote voice-command attack on voice-controllable systems. Attackers are using vulnerabilities to steal things that are in the form of physical devices or the form of virtual using making orders, withdrawal of money, etc. Therefore, detection of these signals is important because almost every device can be attacked using these amplitude-modulated laser signals. In this project, the authors use deep learning to detect the incoming signals as normal voice commands or laser-based audio signals. Mel frequency cepstral coefficients (MFCC) are derived from the audio signals to classify the input audio signals. If the audio signals are identified as laser signals, the voice command can be disabled, and an alert can be displayed to the victim. The maximum accuracy of the machine learning model was 100%, and in the real world, it's around 95%.