使用代理应用程序复制HPC I/O工作负载

J. Dickson, Steven A. Wright, S. Maheswaran, Andy Herdman, Mark C. Miller, S. Jarvis
{"title":"使用代理应用程序复制HPC I/O工作负载","authors":"J. Dickson, Steven A. Wright, S. Maheswaran, Andy Herdman, Mark C. Miller, S. Jarvis","doi":"10.1109/PDSW-DISCS.2016.6","DOIUrl":null,"url":null,"abstract":"Large scale simulation performance is dependent on a number of components, however the task of investigation and optimization has long favored computational and communication elements above I/O. Manually extracting the pattern of I/O behavior from a parent application is a useful way of working to address performance issues on a per-application basis, but developing workflows with some degree of automation and flexibility provides a more powerful approach to tackling current and future I/O challenges. In this paper we describe a workload replication workflow that extracts the I/O pattern of an application and recreates its behavior with a flexible proxy application. We demonstrate how simple lightweight characterization can be translated to provide an effective representation of a physics application, and show how a proxy replication can be used as a tool for investigating I/O library paradigms.","PeriodicalId":375550,"journal":{"name":"2016 1st Joint International Workshop on Parallel Data Storage and data Intensive Scalable Computing Systems (PDSW-DISCS)","volume":"2010 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Replicating HPC I/O Workloads with Proxy Applications\",\"authors\":\"J. Dickson, Steven A. Wright, S. Maheswaran, Andy Herdman, Mark C. Miller, S. Jarvis\",\"doi\":\"10.1109/PDSW-DISCS.2016.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large scale simulation performance is dependent on a number of components, however the task of investigation and optimization has long favored computational and communication elements above I/O. Manually extracting the pattern of I/O behavior from a parent application is a useful way of working to address performance issues on a per-application basis, but developing workflows with some degree of automation and flexibility provides a more powerful approach to tackling current and future I/O challenges. In this paper we describe a workload replication workflow that extracts the I/O pattern of an application and recreates its behavior with a flexible proxy application. We demonstrate how simple lightweight characterization can be translated to provide an effective representation of a physics application, and show how a proxy replication can be used as a tool for investigating I/O library paradigms.\",\"PeriodicalId\":375550,\"journal\":{\"name\":\"2016 1st Joint International Workshop on Parallel Data Storage and data Intensive Scalable Computing Systems (PDSW-DISCS)\",\"volume\":\"2010 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 1st Joint International Workshop on Parallel Data Storage and data Intensive Scalable Computing Systems (PDSW-DISCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDSW-DISCS.2016.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 1st Joint International Workshop on Parallel Data Storage and data Intensive Scalable Computing Systems (PDSW-DISCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDSW-DISCS.2016.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

大规模模拟性能依赖于许多组件,然而研究和优化任务长期以来更倾向于I/O之上的计算和通信元素。手动从父应用程序中提取I/O行为模式是解决基于每个应用程序的性能问题的一种有用方法,但是开发具有一定程度自动化和灵活性的工作流提供了一种更强大的方法来解决当前和未来的I/O挑战。在本文中,我们描述了一个工作负载复制工作流,该工作流提取应用程序的I/O模式,并使用灵活的代理应用程序重新创建其行为。我们将演示如何将简单的轻量级特性转换为提供物理应用程序的有效表示,并展示如何将代理复制用作研究I/O库范例的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Replicating HPC I/O Workloads with Proxy Applications
Large scale simulation performance is dependent on a number of components, however the task of investigation and optimization has long favored computational and communication elements above I/O. Manually extracting the pattern of I/O behavior from a parent application is a useful way of working to address performance issues on a per-application basis, but developing workflows with some degree of automation and flexibility provides a more powerful approach to tackling current and future I/O challenges. In this paper we describe a workload replication workflow that extracts the I/O pattern of an application and recreates its behavior with a flexible proxy application. We demonstrate how simple lightweight characterization can be translated to provide an effective representation of a physics application, and show how a proxy replication can be used as a tool for investigating I/O library paradigms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Klimatic: A Virtual Data Lake for Harvesting and Distribution of Geospatial Data Towards Energy Efficient Data Management in HPC: The Open Ethernet Drive Approach FatMan vs. LittleBoy: Scaling Up Linear Algebraic Operations in Scale-Out Data Platforms A Bloom Filter Based Scalable Data Integrity Check Tool for Large-Scale Dataset Can Non-volatile Memory Benefit MapReduce Applications on HPC Clusters?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1