通过eQTLMotif发现eQTL调控模式

Tao Wang, H Zhao, Yifu Xiao, Hanzi Yang, X. Yin, Yongtian Wang, Bing Xiao, Xuequn Shang, Jiajie Peng
{"title":"通过eQTLMotif发现eQTL调控模式","authors":"Tao Wang, H Zhao, Yifu Xiao, Hanzi Yang, X. Yin, Yongtian Wang, Bing Xiao, Xuequn Shang, Jiajie Peng","doi":"10.1109/BIBM55620.2022.9995450","DOIUrl":null,"url":null,"abstract":"The expression quantitative trait loci (eQTL) analysis has become important for understanding the regulatory function of genomic variants on gene expression in a tissuespecific manner and has been widely applied across species from microbes to mammals. Current eQTL studies mainly focus on the simple one-to-one regulation between variant and gene. Recent research have demonstrated there are also more complex regulatory patterns between eQTLs and genes. However, there is a lack of studies and relevant methods to systematically discover the regulatory patterns between multiple eQTLs and multiple genes. In this regard, this study has proposed a novel computational framework, called eQTLMotif, to discover regulation patterns of eQTLs in a many-to-many manner. This framework mainly consists of two steps: (1) construct a novel eQTL regulatory network by integrating bipartite eQTL network, eQTL mediation effects, and gene regulatory network; (2) perform motif mining through exactly enumerating frequently appeared eQTL regulatory structures. Based on this framework, we for the first time systematically investigated the eQTL regulatory patterns in the human frontal cortex based on a large cohort of postmortem human brains. Experiments have demonstrated that our framework can effectively reveal novel eQTL regulatory patterns. And some are in similar structure to the existing gene regulation patterns, such as feed-forward loop (FFL)-like motif, single input module (SIM)-like motif, and dense overlapping regulons (DOR)- like motif. Our method and findings will further enhance the understanding of regulatory mechanisms of eQTLs in multiple tissues and species.","PeriodicalId":210337,"journal":{"name":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovering eQTL Regulatory Patterns Through eQTLMotif\",\"authors\":\"Tao Wang, H Zhao, Yifu Xiao, Hanzi Yang, X. Yin, Yongtian Wang, Bing Xiao, Xuequn Shang, Jiajie Peng\",\"doi\":\"10.1109/BIBM55620.2022.9995450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The expression quantitative trait loci (eQTL) analysis has become important for understanding the regulatory function of genomic variants on gene expression in a tissuespecific manner and has been widely applied across species from microbes to mammals. Current eQTL studies mainly focus on the simple one-to-one regulation between variant and gene. Recent research have demonstrated there are also more complex regulatory patterns between eQTLs and genes. However, there is a lack of studies and relevant methods to systematically discover the regulatory patterns between multiple eQTLs and multiple genes. In this regard, this study has proposed a novel computational framework, called eQTLMotif, to discover regulation patterns of eQTLs in a many-to-many manner. This framework mainly consists of two steps: (1) construct a novel eQTL regulatory network by integrating bipartite eQTL network, eQTL mediation effects, and gene regulatory network; (2) perform motif mining through exactly enumerating frequently appeared eQTL regulatory structures. Based on this framework, we for the first time systematically investigated the eQTL regulatory patterns in the human frontal cortex based on a large cohort of postmortem human brains. Experiments have demonstrated that our framework can effectively reveal novel eQTL regulatory patterns. And some are in similar structure to the existing gene regulation patterns, such as feed-forward loop (FFL)-like motif, single input module (SIM)-like motif, and dense overlapping regulons (DOR)- like motif. Our method and findings will further enhance the understanding of regulatory mechanisms of eQTLs in multiple tissues and species.\",\"PeriodicalId\":210337,\"journal\":{\"name\":\"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM55620.2022.9995450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM55620.2022.9995450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

表达数量性状位点(eQTL)分析已成为了解基因组变异对基因表达的组织特异性调控功能的重要手段,并已被广泛应用于从微生物到哺乳动物等物种。目前的eQTL研究主要集中在变异与基因之间简单的一对一调控。最近的研究表明,在eqtl和基因之间也存在更复杂的调控模式。然而,目前还缺乏系统地发现多个eqtl与多个基因之间的调控模式的研究和相关方法。在这方面,本研究提出了一个新的计算框架,称为eQTLMotif,以多对多的方式发现eqtl的调控模式。该框架主要包括两个步骤:(1)整合eQTL网络、eQTL中介效应和基因调控网络,构建新的eQTL调控网络;(2)通过精确列举频繁出现的qtl调控结构进行基序挖掘。基于这一框架,我们首次系统地研究了基于大量死后人类大脑的人类额叶皮层中的eQTL调控模式。实验表明,我们的框架可以有效地揭示新的eQTL调控模式。其中一些与现有的基因调控模式结构相似,如前馈回路(FFL)样基序、单输入模块(SIM)样基序和密集重叠调控(DOR)样基序。我们的方法和发现将进一步加深对多种组织和物种中eqtl调控机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovering eQTL Regulatory Patterns Through eQTLMotif
The expression quantitative trait loci (eQTL) analysis has become important for understanding the regulatory function of genomic variants on gene expression in a tissuespecific manner and has been widely applied across species from microbes to mammals. Current eQTL studies mainly focus on the simple one-to-one regulation between variant and gene. Recent research have demonstrated there are also more complex regulatory patterns between eQTLs and genes. However, there is a lack of studies and relevant methods to systematically discover the regulatory patterns between multiple eQTLs and multiple genes. In this regard, this study has proposed a novel computational framework, called eQTLMotif, to discover regulation patterns of eQTLs in a many-to-many manner. This framework mainly consists of two steps: (1) construct a novel eQTL regulatory network by integrating bipartite eQTL network, eQTL mediation effects, and gene regulatory network; (2) perform motif mining through exactly enumerating frequently appeared eQTL regulatory structures. Based on this framework, we for the first time systematically investigated the eQTL regulatory patterns in the human frontal cortex based on a large cohort of postmortem human brains. Experiments have demonstrated that our framework can effectively reveal novel eQTL regulatory patterns. And some are in similar structure to the existing gene regulation patterns, such as feed-forward loop (FFL)-like motif, single input module (SIM)-like motif, and dense overlapping regulons (DOR)- like motif. Our method and findings will further enhance the understanding of regulatory mechanisms of eQTLs in multiple tissues and species.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A framework for associating structural variants with cell-specific transcription factors and histone modifications in defect phenotypes Secure Password Using EEG-based BrainPrint System: Unlock Smartphone Password Using Brain-Computer Interface Technology On functional annotation with gene co-expression networks ST-ChIP: Accurate prediction of spatiotemporal ChIP-seq data with recurrent neural networks Discovering the Knowledge in Unstructured Early Drug Development Data Using NLP and Advanced Analytics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1