谷歌地球图像的土地利用/土地覆盖分类

D. Sowmya, Vishwas S Hegde, J. Suhas, Raghavendra V Hegdekatte, P. D. Shenoy, K. Venugopal
{"title":"谷歌地球图像的土地利用/土地覆盖分类","authors":"D. Sowmya, Vishwas S Hegde, J. Suhas, Raghavendra V Hegdekatte, P. D. Shenoy, K. Venugopal","doi":"10.1109/WIECON-ECE.2017.8468898","DOIUrl":null,"url":null,"abstract":"Google Earth is a source of high spatial resolution images. The freely available Google Earth (GE) images are utilized to generate Land use/Land cover thematic map of the highly heterogeneous landscape of typical urban scene. In this paper, we have presented Euclidean Distance and Average Pixel Intensity based K-NN classification to classify five different land objects. The classification accuracy of the proposed method is compared against generic K-NN. The overall classification accuracy and the kappa value of generic K-NN are found to be 75.04% and 0.74 respectively. Whereas, proposed method results with 76.38% and 0.78. Both the methods exhibits classification error because of poor spectral reflectance properties of google earth imagery.","PeriodicalId":188031,"journal":{"name":"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Land Use/ Land Cover Classification of Google Earth Imagery\",\"authors\":\"D. Sowmya, Vishwas S Hegde, J. Suhas, Raghavendra V Hegdekatte, P. D. Shenoy, K. Venugopal\",\"doi\":\"10.1109/WIECON-ECE.2017.8468898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Google Earth is a source of high spatial resolution images. The freely available Google Earth (GE) images are utilized to generate Land use/Land cover thematic map of the highly heterogeneous landscape of typical urban scene. In this paper, we have presented Euclidean Distance and Average Pixel Intensity based K-NN classification to classify five different land objects. The classification accuracy of the proposed method is compared against generic K-NN. The overall classification accuracy and the kappa value of generic K-NN are found to be 75.04% and 0.74 respectively. Whereas, proposed method results with 76.38% and 0.78. Both the methods exhibits classification error because of poor spectral reflectance properties of google earth imagery.\",\"PeriodicalId\":188031,\"journal\":{\"name\":\"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIECON-ECE.2017.8468898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIECON-ECE.2017.8468898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

谷歌地球是高空间分辨率图像的来源。利用免费获取的Google Earth (GE)图像,生成典型城市高度异质景观的土地利用/土地覆盖专题地图。在本文中,我们提出了基于欧氏距离和平均像素强度的K-NN分类对五种不同的地物进行分类。将该方法的分类精度与一般的K-NN进行了比较。通用K-NN的总体分类准确率为75.04%,kappa值为0.74。而本文提出的方法的结果分别为76.38%和0.78。由于谷歌地球图像的光谱反射率较差,这两种方法都存在分类误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Land Use/ Land Cover Classification of Google Earth Imagery
Google Earth is a source of high spatial resolution images. The freely available Google Earth (GE) images are utilized to generate Land use/Land cover thematic map of the highly heterogeneous landscape of typical urban scene. In this paper, we have presented Euclidean Distance and Average Pixel Intensity based K-NN classification to classify five different land objects. The classification accuracy of the proposed method is compared against generic K-NN. The overall classification accuracy and the kappa value of generic K-NN are found to be 75.04% and 0.74 respectively. Whereas, proposed method results with 76.38% and 0.78. Both the methods exhibits classification error because of poor spectral reflectance properties of google earth imagery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Price Aware Residential Demand Response With Renewable Sources and Electric Vehicle Enhanced Power Generation from Piezoelectric System under Partial Vibration Condition Implementation of ABC Algorithm To Solve Simultaneous Substation Expansion And Transmission Expansion Planning Optimal PMU Placement for Complete Power System Observability under (P–1) Contingency Nanotechnology-Based Efficient Fault Tolerant Decoder in Reversible Logic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1