一个量化摇摆隔离的简单模型

S. Acikgoz, M. DeJong
{"title":"一个量化摇摆隔离的简单模型","authors":"S. Acikgoz, M. DeJong","doi":"10.5459/BNZSEE.51.1.12-22","DOIUrl":null,"url":null,"abstract":"© 2018 New Zealand Society for Earthquake Engineering. All rights reserved. Rocking action at the foundation-structure interface has long been proposed to isolate structures from strong ground motion. In this paper, the fundamental concept of rocking isolation is examined in depth to guide further design efforts. This is achieved by first deriving an analytical model of a flexible structure freely rocking on rigid ground. Decomposing the coupled equations of motion of the model into their modal components provides new information on the mechanics of rocking isolation. After identifying the salient parameters needed to quantify rocking isolation, equations to predict the lateral accelerations, base shear and overturning moments arising during rocking are provided. The analytical model and the simplified equations are then validated using some of the earliest experiments on rocking structures, which were completed in New Zealand. These validations clarify poorly understood phenomena concerning rocking isolation, such as how rocking and vibrations of the structure couple, how this influences the excitation mechanisms of the structure, resulting in seismic shear forces and overturning moments larger than those required for uplift. The findings provide an analytical basis for designing efficient rocking systems that successfully limit force demands.","PeriodicalId":343472,"journal":{"name":"Bulletin of the New Zealand National Society for Earthquake Engineering","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A simple model to quantify rocking isolation\",\"authors\":\"S. Acikgoz, M. DeJong\",\"doi\":\"10.5459/BNZSEE.51.1.12-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"© 2018 New Zealand Society for Earthquake Engineering. All rights reserved. Rocking action at the foundation-structure interface has long been proposed to isolate structures from strong ground motion. In this paper, the fundamental concept of rocking isolation is examined in depth to guide further design efforts. This is achieved by first deriving an analytical model of a flexible structure freely rocking on rigid ground. Decomposing the coupled equations of motion of the model into their modal components provides new information on the mechanics of rocking isolation. After identifying the salient parameters needed to quantify rocking isolation, equations to predict the lateral accelerations, base shear and overturning moments arising during rocking are provided. The analytical model and the simplified equations are then validated using some of the earliest experiments on rocking structures, which were completed in New Zealand. These validations clarify poorly understood phenomena concerning rocking isolation, such as how rocking and vibrations of the structure couple, how this influences the excitation mechanisms of the structure, resulting in seismic shear forces and overturning moments larger than those required for uplift. The findings provide an analytical basis for designing efficient rocking systems that successfully limit force demands.\",\"PeriodicalId\":343472,\"journal\":{\"name\":\"Bulletin of the New Zealand National Society for Earthquake Engineering\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the New Zealand National Society for Earthquake Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5459/BNZSEE.51.1.12-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the New Zealand National Society for Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5459/BNZSEE.51.1.12-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

©2018新西兰地震工程学会。版权所有。长期以来,人们一直认为基础结构界面处的摇摆作用可以使结构免受强地震动的影响。本文深入探讨了隔震的基本概念,以指导进一步的设计工作。这是通过首先推导出在刚性地面上自由摇摆的柔性结构的解析模型来实现的。将模型的耦合运动方程分解为它们的模态分量提供了关于摇隔力学的新信息。在确定了量化摇摆隔离所需的重要参数后,给出了预测摇摆过程中产生的横向加速度、基底剪切和倾覆力矩的方程。分析模型和简化方程随后通过在新西兰完成的一些最早的摇摆结构实验进行了验证。这些验证澄清了关于摇摆隔离的鲜为人知的现象,例如结构的摇摆和振动如何耦合,这如何影响结构的激励机制,导致地震剪力和倾覆力矩大于隆起所需的力矩。研究结果为设计有效的摇摆系统,成功地限制力需求提供了分析基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A simple model to quantify rocking isolation
© 2018 New Zealand Society for Earthquake Engineering. All rights reserved. Rocking action at the foundation-structure interface has long been proposed to isolate structures from strong ground motion. In this paper, the fundamental concept of rocking isolation is examined in depth to guide further design efforts. This is achieved by first deriving an analytical model of a flexible structure freely rocking on rigid ground. Decomposing the coupled equations of motion of the model into their modal components provides new information on the mechanics of rocking isolation. After identifying the salient parameters needed to quantify rocking isolation, equations to predict the lateral accelerations, base shear and overturning moments arising during rocking are provided. The analytical model and the simplified equations are then validated using some of the earliest experiments on rocking structures, which were completed in New Zealand. These validations clarify poorly understood phenomena concerning rocking isolation, such as how rocking and vibrations of the structure couple, how this influences the excitation mechanisms of the structure, resulting in seismic shear forces and overturning moments larger than those required for uplift. The findings provide an analytical basis for designing efficient rocking systems that successfully limit force demands.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrated Wellington region land transport resilience study Improving Wellington region’s resilience through integrated infrastructure resilience investments ‘End to end’ linkage structure for integrated impact assessment of infrastructure networks under natural hazards Strengthening heritage tunnels to enhance the resilience of Wellington’s transport network Resilience of infrastructure networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1