基于VHDL的神经模糊锂离子混合超级电容器管理:(基于神经模糊逻辑系统高级描述的优势)

Donato Repole, L. Adrian
{"title":"基于VHDL的神经模糊锂离子混合超级电容器管理:(基于神经模糊逻辑系统高级描述的优势)","authors":"Donato Repole, L. Adrian","doi":"10.1109/RTUCON51174.2020.9316552","DOIUrl":null,"url":null,"abstract":"VHDL language imposes some limitations, compared with the flexibility and expressiveness of other fuzzy logic oriented languages. In order to achieve behavioural modelling, a VHDL description style can be used where the system structure description (fuzzy sets, rule base etc.) and the operator description (connectives and fuzzy operations) are defined separately. It allows describing both the fuzzy system structure and the processing algorithm independently. The description format allows the use of linguistic hedges in order to compact the rules defining the system's behaviour. The paper analyses the potential advantages for the use of bespoke high-level descriptions and the feasibility of the translation into a VHDL code with a GUI interface of a controller described by a fuzzy logic oriented language. This study is encased in a particular application: Lithium-Ion Hybrid Super Capacitors management. The Lithium-Ion Hybrid Super Capacitor is a novel technology breaking new ground in the technology sector. The Lithium-Ion Hybrid Super Capacitor (LIHC) is fast evolving as the missing link between the Electric Double Layer Capacitor (EDLC) and the Lithium-Ion Battery (LIB), is a distinct hybrid of the two technologies. To be effective, it requires a management controller, which the paper targets to produce in a VHDL hardware description language.","PeriodicalId":332414,"journal":{"name":"2020 IEEE 61th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"VHDL based Neuro-Fuzzy Lithium-Ion Hybrid Super Capacitors management: (Advantages of the high-level descriptions of neural fuzzy logic based systems)\",\"authors\":\"Donato Repole, L. Adrian\",\"doi\":\"10.1109/RTUCON51174.2020.9316552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"VHDL language imposes some limitations, compared with the flexibility and expressiveness of other fuzzy logic oriented languages. In order to achieve behavioural modelling, a VHDL description style can be used where the system structure description (fuzzy sets, rule base etc.) and the operator description (connectives and fuzzy operations) are defined separately. It allows describing both the fuzzy system structure and the processing algorithm independently. The description format allows the use of linguistic hedges in order to compact the rules defining the system's behaviour. The paper analyses the potential advantages for the use of bespoke high-level descriptions and the feasibility of the translation into a VHDL code with a GUI interface of a controller described by a fuzzy logic oriented language. This study is encased in a particular application: Lithium-Ion Hybrid Super Capacitors management. The Lithium-Ion Hybrid Super Capacitor is a novel technology breaking new ground in the technology sector. The Lithium-Ion Hybrid Super Capacitor (LIHC) is fast evolving as the missing link between the Electric Double Layer Capacitor (EDLC) and the Lithium-Ion Battery (LIB), is a distinct hybrid of the two technologies. To be effective, it requires a management controller, which the paper targets to produce in a VHDL hardware description language.\",\"PeriodicalId\":332414,\"journal\":{\"name\":\"2020 IEEE 61th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 61th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTUCON51174.2020.9316552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 61th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTUCON51174.2020.9316552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

与其他面向模糊逻辑的语言相比,VHDL语言具有一定的灵活性和表现力。为了实现行为建模,可以使用VHDL描述风格,其中系统结构描述(模糊集、规则库等)和操作符描述(连接词和模糊操作)分别定义。它允许对模糊系统结构和处理算法进行独立描述。描述格式允许使用语言限制,以压缩定义系统行为的规则。本文分析了使用定制高级描述的潜在优势,以及用面向模糊逻辑语言描述的控制器的GUI界面转换成VHDL代码的可行性。这项研究包含在一个特殊的应用中:锂离子混合超级电容器管理。锂离子混合超级电容器是一项在技术领域开辟新天地的新技术。作为双层电电容器(EDLC)和锂离子电池(LIB)之间缺失的一环,锂离子混合超级电容器(LIHC)正在迅速发展,是两种技术的独特混合。为了使其有效,需要一个管理控制器,本文的目标是用VHDL硬件描述语言生成管理控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VHDL based Neuro-Fuzzy Lithium-Ion Hybrid Super Capacitors management: (Advantages of the high-level descriptions of neural fuzzy logic based systems)
VHDL language imposes some limitations, compared with the flexibility and expressiveness of other fuzzy logic oriented languages. In order to achieve behavioural modelling, a VHDL description style can be used where the system structure description (fuzzy sets, rule base etc.) and the operator description (connectives and fuzzy operations) are defined separately. It allows describing both the fuzzy system structure and the processing algorithm independently. The description format allows the use of linguistic hedges in order to compact the rules defining the system's behaviour. The paper analyses the potential advantages for the use of bespoke high-level descriptions and the feasibility of the translation into a VHDL code with a GUI interface of a controller described by a fuzzy logic oriented language. This study is encased in a particular application: Lithium-Ion Hybrid Super Capacitors management. The Lithium-Ion Hybrid Super Capacitor is a novel technology breaking new ground in the technology sector. The Lithium-Ion Hybrid Super Capacitor (LIHC) is fast evolving as the missing link between the Electric Double Layer Capacitor (EDLC) and the Lithium-Ion Battery (LIB), is a distinct hybrid of the two technologies. To be effective, it requires a management controller, which the paper targets to produce in a VHDL hardware description language.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measuring the impact of demand response services on electricity prices in Latvian electricity market Case Studies for Optimal Cable Line Placement and Sheath Grounding to Increase its Operational Characteristics Reduction of Electromagnetic Emissions Generated by Inductive Resonant WPT Systems Using Multi-Switching-Frequency-Based Method Economic Assessment Of The Efficiency Of The Application Of Energy Storage System To Compensate The Load Rise And Shedding Of Gas Piston Installation Control Algorithms Based on Load Angle and Phase Current Difference for Traction Switched Reluctance Motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1