可解释BDI试剂的设计与评价

M. Harbers, K. Bosch, J. Meyer
{"title":"可解释BDI试剂的设计与评价","authors":"M. Harbers, K. Bosch, J. Meyer","doi":"10.1109/WI-IAT.2010.115","DOIUrl":null,"url":null,"abstract":"It is widely acknowledged that providing explanations is an important capability of intelligent systems. Explanation capabilities are useful, for example, in scenario-based training systems with intelligent virtual agents. Trainees learn more from scenario-based training when they understand why the virtual agents act the way they do. In this paper, we present a model for explainable BDI agents which enables the explanation of BDI agent behavior in terms of underlying beliefs and goals. Different explanation algorithms can be specified in the model, generating different types of explanations. In a user study (n=20), we compare four explanation algorithms by asking trainees which explanations they consider most useful. Based on the results, we discuss which explanation types should be given under what conditions.","PeriodicalId":340211,"journal":{"name":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Design and Evaluation of Explainable BDI Agents\",\"authors\":\"M. Harbers, K. Bosch, J. Meyer\",\"doi\":\"10.1109/WI-IAT.2010.115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is widely acknowledged that providing explanations is an important capability of intelligent systems. Explanation capabilities are useful, for example, in scenario-based training systems with intelligent virtual agents. Trainees learn more from scenario-based training when they understand why the virtual agents act the way they do. In this paper, we present a model for explainable BDI agents which enables the explanation of BDI agent behavior in terms of underlying beliefs and goals. Different explanation algorithms can be specified in the model, generating different types of explanations. In a user study (n=20), we compare four explanation algorithms by asking trainees which explanations they consider most useful. Based on the results, we discuss which explanation types should be given under what conditions.\",\"PeriodicalId\":340211,\"journal\":{\"name\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2010.115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

人们普遍认为提供解释是智能系统的一项重要能力。解释能力很有用,例如,在具有智能虚拟代理的基于场景的训练系统中。当受训者理解虚拟代理的行为方式时,他们会从基于场景的培训中学到更多东西。在本文中,我们提出了一个可解释的BDI代理模型,该模型可以根据潜在的信念和目标来解释BDI代理的行为。可以在模型中指定不同的解释算法,生成不同类型的解释。在一项用户研究(n=20)中,我们通过询问受训者他们认为最有用的解释来比较四种解释算法。在此基础上,我们讨论了在什么条件下应该给出哪些解释类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Evaluation of Explainable BDI Agents
It is widely acknowledged that providing explanations is an important capability of intelligent systems. Explanation capabilities are useful, for example, in scenario-based training systems with intelligent virtual agents. Trainees learn more from scenario-based training when they understand why the virtual agents act the way they do. In this paper, we present a model for explainable BDI agents which enables the explanation of BDI agent behavior in terms of underlying beliefs and goals. Different explanation algorithms can be specified in the model, generating different types of explanations. In a user study (n=20), we compare four explanation algorithms by asking trainees which explanations they consider most useful. Based on the results, we discuss which explanation types should be given under what conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Game Theory for Security: Lessons Learned from Deployed Applications A Decision Rule Method for Assessing the Completeness and Consistency of a Data Warehouse Semantic Structure Content for Dynamic Web Pages Enhancing the Performance of Metadata Service for Cloud Computing Improving Diversity of Focused Summaries through the Negative Endorsements of Redundant Facts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1