{"title":"高维核密度的哈希估计","authors":"M. Charikar, Paris Siminelakis","doi":"10.1109/FOCS.2017.99","DOIUrl":null,"url":null,"abstract":"Given a set of points P⊄ R^d and a kernel k, the Kernel Density Estimate at a point x∊R^d is defined as \\mathrm{KDE}_{P}(x)=\\frac{1}{|P|}\\sum_{y\\in P} k(x,y). We study the problem of designing a data structure that given a data set P and a kernel function, returns approximations to the kernel density} of a query point in sublinear time}. We introduce a class of unbiased estimators for kernel density implemented through locality-sensitive hashing, and give general theorems bounding the variance of such estimators. These estimators give rise to efficient data structures for estimating the kernel density in high dimensions for a variety of commonly used kernels. Our work is the first to provide data-structures with theoretical guarantees that improve upon simple random sampling in high dimensions.","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":"{\"title\":\"Hashing-Based-Estimators for Kernel Density in High Dimensions\",\"authors\":\"M. Charikar, Paris Siminelakis\",\"doi\":\"10.1109/FOCS.2017.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a set of points P⊄ R^d and a kernel k, the Kernel Density Estimate at a point x∊R^d is defined as \\\\mathrm{KDE}_{P}(x)=\\\\frac{1}{|P|}\\\\sum_{y\\\\in P} k(x,y). We study the problem of designing a data structure that given a data set P and a kernel function, returns approximations to the kernel density} of a query point in sublinear time}. We introduce a class of unbiased estimators for kernel density implemented through locality-sensitive hashing, and give general theorems bounding the variance of such estimators. These estimators give rise to efficient data structures for estimating the kernel density in high dimensions for a variety of commonly used kernels. Our work is the first to provide data-structures with theoretical guarantees that improve upon simple random sampling in high dimensions.\",\"PeriodicalId\":311592,\"journal\":{\"name\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"82\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2017.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82
摘要
给定一组点P⊄R^d和一个核k,在点x∊R^d的核密度估计定义为\mathrm{KDE} _P{(x)= }\frac{1}{|P|}\sum _y{\in P }k(x,y)。我们研究了设计一个数据结构的问题,给定一个数据集P和一个核函数,返回查询点在亚线性时间内的核密度的近似值。我们引入了一类通过位置敏感哈希实现的核密度无偏估计,并给出了该类估计方差的一般定理。这些估计器为估计各种常用核的高维核密度提供了有效的数据结构。我们的工作是第一个提供具有理论保证的数据结构,改进了高维的简单随机抽样。
Hashing-Based-Estimators for Kernel Density in High Dimensions
Given a set of points P⊄ R^d and a kernel k, the Kernel Density Estimate at a point x∊R^d is defined as \mathrm{KDE}_{P}(x)=\frac{1}{|P|}\sum_{y\in P} k(x,y). We study the problem of designing a data structure that given a data set P and a kernel function, returns approximations to the kernel density} of a query point in sublinear time}. We introduce a class of unbiased estimators for kernel density implemented through locality-sensitive hashing, and give general theorems bounding the variance of such estimators. These estimators give rise to efficient data structures for estimating the kernel density in high dimensions for a variety of commonly used kernels. Our work is the first to provide data-structures with theoretical guarantees that improve upon simple random sampling in high dimensions.