基于信念传播的配气网络数据融合与状态估计

Goekhan Demirel, S. D. Jongh, F. Mueller, T. Leibfried
{"title":"基于信念传播的配气网络数据融合与状态估计","authors":"Goekhan Demirel, S. D. Jongh, F. Mueller, T. Leibfried","doi":"10.1109/UPEC55022.2022.9917770","DOIUrl":null,"url":null,"abstract":"This paper proposes a solution to the state estimation problem in gas networks using the distributed belief propagation (BP) algorithm. Power system identification applications require precise and robust state estimatiors as well as various sensor information. Compared to augmenting the power system with a very large number of sensors, a limited number of sensors and probabilistic graphical models can be used to infer the system state and reduce hardware investments. A novel BP algorithm propagates the pressure quantities at nodes in the gas network based on pressure manometer signals and applies a correction based on the information of neighboring nodes in the fusion step by using additional supporting sensors. Finally, the data fusion algorithm is demonstrated for a 14-node gas distribution network based on real data. This paper presents a novel algorithm aimed at tackling the traditional weighted least squares method to validate the developed novel approach in order to highlight the advantage of the distributed inference algorithm over traditional methods.","PeriodicalId":371561,"journal":{"name":"2022 57th International Universities Power Engineering Conference (UPEC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Fusion and State Estimation Using Belief Propagation in Gas Distribution Networks\",\"authors\":\"Goekhan Demirel, S. D. Jongh, F. Mueller, T. Leibfried\",\"doi\":\"10.1109/UPEC55022.2022.9917770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a solution to the state estimation problem in gas networks using the distributed belief propagation (BP) algorithm. Power system identification applications require precise and robust state estimatiors as well as various sensor information. Compared to augmenting the power system with a very large number of sensors, a limited number of sensors and probabilistic graphical models can be used to infer the system state and reduce hardware investments. A novel BP algorithm propagates the pressure quantities at nodes in the gas network based on pressure manometer signals and applies a correction based on the information of neighboring nodes in the fusion step by using additional supporting sensors. Finally, the data fusion algorithm is demonstrated for a 14-node gas distribution network based on real data. This paper presents a novel algorithm aimed at tackling the traditional weighted least squares method to validate the developed novel approach in order to highlight the advantage of the distributed inference algorithm over traditional methods.\",\"PeriodicalId\":371561,\"journal\":{\"name\":\"2022 57th International Universities Power Engineering Conference (UPEC)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 57th International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC55022.2022.9917770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 57th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC55022.2022.9917770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于分布式信念传播(BP)算法的天然气网络状态估计问题的解决方案。电力系统识别应用需要精确和鲁棒的状态估计以及各种传感器信息。与使用大量传感器来扩充电力系统相比,可以使用有限数量的传感器和概率图模型来推断系统状态并减少硬件投资。一种新的BP算法基于压力计信号传播气体网络中节点的压力量,并在融合步骤中利用附加支持传感器基于相邻节点的信息进行校正。最后,基于实际数据,对14节点配气网络的数据融合算法进行了验证。本文提出了一种新的算法,旨在解决传统的加权最小二乘方法,以验证所开发的新方法,以突出分布式推理算法相对于传统方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Fusion and State Estimation Using Belief Propagation in Gas Distribution Networks
This paper proposes a solution to the state estimation problem in gas networks using the distributed belief propagation (BP) algorithm. Power system identification applications require precise and robust state estimatiors as well as various sensor information. Compared to augmenting the power system with a very large number of sensors, a limited number of sensors and probabilistic graphical models can be used to infer the system state and reduce hardware investments. A novel BP algorithm propagates the pressure quantities at nodes in the gas network based on pressure manometer signals and applies a correction based on the information of neighboring nodes in the fusion step by using additional supporting sensors. Finally, the data fusion algorithm is demonstrated for a 14-node gas distribution network based on real data. This paper presents a novel algorithm aimed at tackling the traditional weighted least squares method to validate the developed novel approach in order to highlight the advantage of the distributed inference algorithm over traditional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Evaluation of Extending an Existing Substation Automation System using IEC 61850 Time Characteristic Curve Based Earth Fault Relay Selectivity Assessment for Optimal Overcurrent Relay Coordination in Distribution Networks Impact of the Photovoltaic Array Configuration on its Performance under Partial Shading Conditions The Impacts of The Temperature-Humidity Fluctuations in Substations and Practical Experimental Applications Synthesis and Characterization of Multi-level Pseudo-Random Sequences as Excitation Signals for System Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1