A. Aiello, M. Paúr, B. Stoklasa, Z. Hradil, J. Řeháček, L. Sánchez‐Soto
{"title":"近轴光束聚焦的观测","authors":"A. Aiello, M. Paúr, B. Stoklasa, Z. Hradil, J. Řeháček, L. Sánchez‐Soto","doi":"10.1364/OSAC.400410","DOIUrl":null,"url":null,"abstract":"We report,to the best of our knowledge, the first observation of concentrating paraxial beams of light in a linear nondispersive medium. We have generated this intriguing class of light beams, recently predicted by one of us, in both one- and two-dimensional configurations. As we demonstrate in our experiments, these concentrating beams display unconventional features, such as the ability to strongly focus in the focal spot of a thin lens like a plane wave, while keeping their total energy finite.","PeriodicalId":304443,"journal":{"name":"arXiv: Optics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Observation of concentrating paraxial beams\",\"authors\":\"A. Aiello, M. Paúr, B. Stoklasa, Z. Hradil, J. Řeháček, L. Sánchez‐Soto\",\"doi\":\"10.1364/OSAC.400410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report,to the best of our knowledge, the first observation of concentrating paraxial beams of light in a linear nondispersive medium. We have generated this intriguing class of light beams, recently predicted by one of us, in both one- and two-dimensional configurations. As we demonstrate in our experiments, these concentrating beams display unconventional features, such as the ability to strongly focus in the focal spot of a thin lens like a plane wave, while keeping their total energy finite.\",\"PeriodicalId\":304443,\"journal\":{\"name\":\"arXiv: Optics\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/OSAC.400410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/OSAC.400410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We report,to the best of our knowledge, the first observation of concentrating paraxial beams of light in a linear nondispersive medium. We have generated this intriguing class of light beams, recently predicted by one of us, in both one- and two-dimensional configurations. As we demonstrate in our experiments, these concentrating beams display unconventional features, such as the ability to strongly focus in the focal spot of a thin lens like a plane wave, while keeping their total energy finite.