从监测数据学习温室气候控制政策

Xiaoxuan Zhao, Haoyu Wang, Xiujuan Wang, U. Lewlomphaisarl, Dong Li, Jing Hua, Mengzhen Kang
{"title":"从监测数据学习温室气候控制政策","authors":"Xiaoxuan Zhao, Haoyu Wang, Xiujuan Wang, U. Lewlomphaisarl, Dong Li, Jing Hua, Mengzhen Kang","doi":"10.1109/CAC57257.2022.10055372","DOIUrl":null,"url":null,"abstract":"The knowledge of solar greenhouse growers on environment control plays an important role in greenhouse production and management. We proposed a way to extract the control strategies from the monitored data of greenhouses by building a long short-term memory (LSTM) model. The result is verified according to the real monitored data of a solar greenhouse, which shows that the model can learn the control strategy of a ventilator in the solar greenhouse. Through monitored data and models, the knowledge of greenhouse ventilation control can be learned, and automatic control can be achieved in a greenhouse with a similar configuration.","PeriodicalId":287137,"journal":{"name":"2022 China Automation Congress (CAC)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning Greenhouse Climate Control Policy from Monitored Data\",\"authors\":\"Xiaoxuan Zhao, Haoyu Wang, Xiujuan Wang, U. Lewlomphaisarl, Dong Li, Jing Hua, Mengzhen Kang\",\"doi\":\"10.1109/CAC57257.2022.10055372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The knowledge of solar greenhouse growers on environment control plays an important role in greenhouse production and management. We proposed a way to extract the control strategies from the monitored data of greenhouses by building a long short-term memory (LSTM) model. The result is verified according to the real monitored data of a solar greenhouse, which shows that the model can learn the control strategy of a ventilator in the solar greenhouse. Through monitored data and models, the knowledge of greenhouse ventilation control can be learned, and automatic control can be achieved in a greenhouse with a similar configuration.\",\"PeriodicalId\":287137,\"journal\":{\"name\":\"2022 China Automation Congress (CAC)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 China Automation Congress (CAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAC57257.2022.10055372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 China Automation Congress (CAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAC57257.2022.10055372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

日光温室种植者的环境控制知识在温室生产和管理中起着重要的作用。提出了一种通过建立长短期记忆(LSTM)模型从温室监测数据中提取控制策略的方法。根据某日光温室的实际监测数据对模型进行了验证,表明该模型能够学习日光温室通风机的控制策略。通过监测数据和模型,可以学习温室通风控制的知识,并在配置相似的温室中实现自动控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Greenhouse Climate Control Policy from Monitored Data
The knowledge of solar greenhouse growers on environment control plays an important role in greenhouse production and management. We proposed a way to extract the control strategies from the monitored data of greenhouses by building a long short-term memory (LSTM) model. The result is verified according to the real monitored data of a solar greenhouse, which shows that the model can learn the control strategy of a ventilator in the solar greenhouse. Through monitored data and models, the knowledge of greenhouse ventilation control can be learned, and automatic control can be achieved in a greenhouse with a similar configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Single Object Tracking in Satellite Videos with Meta-updater and Knowledge Distillation An improved event-trigger-based robust 6-DOF spacecraft formation control scheme under restricted communication Adaptive Neural Fixed-time Tracking Control of Underactuated USVs With External Disturbances Computer-Aided Diagnosis of COVID-19 with Joint Instance Segmentation and Classification Prescribed-Time Backstepping Algorithms for Leader-Follower Multi-Agent Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1