监督机器学习中的元学习

A. A. Masud, Sabbir Hossain, Muhsina Rifa, Farhana Akter, Akib Zaman, D. Farid
{"title":"监督机器学习中的元学习","authors":"A. A. Masud, Sabbir Hossain, Muhsina Rifa, Farhana Akter, Akib Zaman, D. Farid","doi":"10.1109/SKIMA57145.2022.10029537","DOIUrl":null,"url":null,"abstract":"In the present digital era, a popular use of Machine learning is knowledge mining from big data. Machine learning is the sub-branch of Artificial Intelligence (AI) that extracts rules automatically from Big Data for decision-making to build expert systems. Meta-Learning is a sub-branch of machine learning, which uses machine learning classifiers that learns to map and combine predictions and information of data of other ML-models in the field of ensemble-learning. Meta-learning helps us to select the best/right learning algorithms to solve a particular problem. It maps from the meta-data of other machine learning algorithms by evaluating it on different datasets. In this paper, we have presented very recent state-of-the-art research works on meta-learning. We have categorized meta-learning on supervised learning data sets into three categories: (1) Task Independent Recommendation, (2) Configuration Space Design, and (3) Configuration Transfer, and reviewed the recent works on each category.","PeriodicalId":277436,"journal":{"name":"2022 14th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-Learning in Supervised Machine Learning\",\"authors\":\"A. A. Masud, Sabbir Hossain, Muhsina Rifa, Farhana Akter, Akib Zaman, D. Farid\",\"doi\":\"10.1109/SKIMA57145.2022.10029537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present digital era, a popular use of Machine learning is knowledge mining from big data. Machine learning is the sub-branch of Artificial Intelligence (AI) that extracts rules automatically from Big Data for decision-making to build expert systems. Meta-Learning is a sub-branch of machine learning, which uses machine learning classifiers that learns to map and combine predictions and information of data of other ML-models in the field of ensemble-learning. Meta-learning helps us to select the best/right learning algorithms to solve a particular problem. It maps from the meta-data of other machine learning algorithms by evaluating it on different datasets. In this paper, we have presented very recent state-of-the-art research works on meta-learning. We have categorized meta-learning on supervised learning data sets into three categories: (1) Task Independent Recommendation, (2) Configuration Space Design, and (3) Configuration Transfer, and reviewed the recent works on each category.\",\"PeriodicalId\":277436,\"journal\":{\"name\":\"2022 14th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SKIMA57145.2022.10029537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKIMA57145.2022.10029537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在当今的数字时代,机器学习的一个流行应用是从大数据中挖掘知识。机器学习是人工智能(AI)的一个分支,它从大数据中自动提取规则,用于决策,构建专家系统。元学习是机器学习的一个分支,它使用机器学习分类器来学习映射和组合集成学习领域中其他ml模型的预测和数据信息。元学习帮助我们选择最佳/正确的学习算法来解决特定问题。它通过在不同的数据集上评估其他机器学习算法的元数据来映射。在本文中,我们介绍了最近关于元学习的最新研究成果。我们将有监督学习数据集上的元学习分为三类:(1)任务独立推荐,(2)配置空间设计,(3)配置转移,并回顾了每一类最近的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Meta-Learning in Supervised Machine Learning
In the present digital era, a popular use of Machine learning is knowledge mining from big data. Machine learning is the sub-branch of Artificial Intelligence (AI) that extracts rules automatically from Big Data for decision-making to build expert systems. Meta-Learning is a sub-branch of machine learning, which uses machine learning classifiers that learns to map and combine predictions and information of data of other ML-models in the field of ensemble-learning. Meta-learning helps us to select the best/right learning algorithms to solve a particular problem. It maps from the meta-data of other machine learning algorithms by evaluating it on different datasets. In this paper, we have presented very recent state-of-the-art research works on meta-learning. We have categorized meta-learning on supervised learning data sets into three categories: (1) Task Independent Recommendation, (2) Configuration Space Design, and (3) Configuration Transfer, and reviewed the recent works on each category.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Clustering Based Priority Driven Sampling Technique for Imbalance Data Classification Incorporating Extended Reality Technology for Delivering Computer Aided Design and Visualisation Modules Generation of High-Quality Relevant Judgments through Document Similarity and Document Pooling for the Evaluation of Information Retrieval Systems A Framework of Ensemble CNN Models for Real-Time Sign Language Translation Multidimensional Disturbance Propagation Model for a Network of Bus Lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1