面向重用的自动本体识别

M. Speretta, S. Gauch
{"title":"面向重用的自动本体识别","authors":"M. Speretta, S. Gauch","doi":"10.1109/WI.2007.24","DOIUrl":null,"url":null,"abstract":"The increasing interest in the Semantic Web is producing a growing number of publicly available domain ontologies. These ontologies are a rich source of information that could be very helpful during the process of engineering other domain ontologies. We present an automatic technique that, given a set of Web documents, selects appropriate domain ontologies from a collection of pre-existing ontologies. We empirically compare an ontology match score that is based on statistical techniques with simple keyword matching algorithms. The algorithms were tested on a set of 183 publicly available ontologies and documents representing ten different domains. Our algorithm was able to select the correct domain ontology as the top ranked ontology 8 out of 10 times.","PeriodicalId":192501,"journal":{"name":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Automatic Ontology Identification for Reuse\",\"authors\":\"M. Speretta, S. Gauch\",\"doi\":\"10.1109/WI.2007.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing interest in the Semantic Web is producing a growing number of publicly available domain ontologies. These ontologies are a rich source of information that could be very helpful during the process of engineering other domain ontologies. We present an automatic technique that, given a set of Web documents, selects appropriate domain ontologies from a collection of pre-existing ontologies. We empirically compare an ontology match score that is based on statistical techniques with simple keyword matching algorithms. The algorithms were tested on a set of 183 publicly available ontologies and documents representing ten different domains. Our algorithm was able to select the correct domain ontology as the top ranked ontology 8 out of 10 times.\",\"PeriodicalId\":192501,\"journal\":{\"name\":\"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2007.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2007.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

对语义网日益增长的兴趣产生了越来越多的公开可用的领域本体。这些本体是丰富的信息源,在设计其他领域本体的过程中非常有帮助。我们提出了一种自动技术,在给定一组Web文档的情况下,从预先存在的本体集合中选择适当的域本体。我们将基于统计技术的本体匹配分数与简单的关键字匹配算法进行了实证比较。这些算法在183个公开可用的本体和代表10个不同领域的文档上进行了测试。我们的算法能够在10次中有8次选择正确的领域本体作为排名最高的本体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Ontology Identification for Reuse
The increasing interest in the Semantic Web is producing a growing number of publicly available domain ontologies. These ontologies are a rich source of information that could be very helpful during the process of engineering other domain ontologies. We present an automatic technique that, given a set of Web documents, selects appropriate domain ontologies from a collection of pre-existing ontologies. We empirically compare an ontology match score that is based on statistical techniques with simple keyword matching algorithms. The algorithms were tested on a set of 183 publicly available ontologies and documents representing ten different domains. Our algorithm was able to select the correct domain ontology as the top ranked ontology 8 out of 10 times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Conceptual Tagging: An Ontology Pruning Use Case Extending Description Logic for Reasoning about Ontology Evolution You Can't Always Get What You Want: Achieving Differentiated Service Levels with Pricing Agents in a Storage Grid An unsupervised hierarchical approach to document categorization How Up-to-date should it be? the Value of Instant Profiling and Adaptation in Information Filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1