气候变化与上升流区珊瑚礁发育的持续性

Victor Rodriguez-Ruano, L. Toth, C. Randall, R. Aronson
{"title":"气候变化与上升流区珊瑚礁发育的持续性","authors":"Victor Rodriguez-Ruano, L. Toth, C. Randall, R. Aronson","doi":"10.58782/flmnh.tkof3493","DOIUrl":null,"url":null,"abstract":"Upwelling exerts a major control on coral-reef development in the eastern tropical Pacific (ETP). Upwelling zones exhibit conditions that are detrimental to coral growth, such as low sea-surface temperatures and high levels of turbidity. During the late Holocene, the reefs in the strongly upwelling Gulf of Panamá (GoP) and the weakly upwelling Gulf of Chiriquí (GoC) experienced a climate-driven hiatus in coral growth and reef development, and strong upwelling exacerbated this hiatus in the GoP. Strong upwelling in the GoP is now acting as a buffer against thermal stress, providing a refuge from climatic warming, whereas corals in the GoC are highly vulnerable to increased thermal stress. Using ecological surveys and paleoecological data, we quantified calcification and bioerosion processes for the reefs in these two gulfs to develop carbonate-budget models. We determined the reef-accretion potential (RAP) for reefs in each gulf to project their capacity to keep pace with current and predicted future rates of sea-level rise. On average, reefs in the GoP exhibited an average RAP of 5.5 mm yr-1, which would be enough to keep pace with future rates of sea-level rise if CO2 emissions were reduced under representative concentration pathways (RCPs) 2.6 and 4.5. In contrast, reefs in the GoC exhibited an average RAP of only 0.3 mm yr-1, which is not even enough to keep pace with contemporary rates of sea-level rise in Panamá (1.4 mm yr-1). Furthermore, even if the reefs in either gulf could achieve 100% coral cover, none of them has the capacity to keep pace with RCP 8.5. Although the GoP should support reef development in the near future, reducing greenhouse-gas emissions will be essential to ensure the persistence of accreting reefs and promote the recovery of those vulnerable to net erosion.","PeriodicalId":106523,"journal":{"name":"Bulletin of the Florida Museum of Natural History","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Climate Change and The Persistence of Coral-Reef Development in Upwelling Zones\",\"authors\":\"Victor Rodriguez-Ruano, L. Toth, C. Randall, R. Aronson\",\"doi\":\"10.58782/flmnh.tkof3493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Upwelling exerts a major control on coral-reef development in the eastern tropical Pacific (ETP). Upwelling zones exhibit conditions that are detrimental to coral growth, such as low sea-surface temperatures and high levels of turbidity. During the late Holocene, the reefs in the strongly upwelling Gulf of Panamá (GoP) and the weakly upwelling Gulf of Chiriquí (GoC) experienced a climate-driven hiatus in coral growth and reef development, and strong upwelling exacerbated this hiatus in the GoP. Strong upwelling in the GoP is now acting as a buffer against thermal stress, providing a refuge from climatic warming, whereas corals in the GoC are highly vulnerable to increased thermal stress. Using ecological surveys and paleoecological data, we quantified calcification and bioerosion processes for the reefs in these two gulfs to develop carbonate-budget models. We determined the reef-accretion potential (RAP) for reefs in each gulf to project their capacity to keep pace with current and predicted future rates of sea-level rise. On average, reefs in the GoP exhibited an average RAP of 5.5 mm yr-1, which would be enough to keep pace with future rates of sea-level rise if CO2 emissions were reduced under representative concentration pathways (RCPs) 2.6 and 4.5. In contrast, reefs in the GoC exhibited an average RAP of only 0.3 mm yr-1, which is not even enough to keep pace with contemporary rates of sea-level rise in Panamá (1.4 mm yr-1). Furthermore, even if the reefs in either gulf could achieve 100% coral cover, none of them has the capacity to keep pace with RCP 8.5. Although the GoP should support reef development in the near future, reducing greenhouse-gas emissions will be essential to ensure the persistence of accreting reefs and promote the recovery of those vulnerable to net erosion.\",\"PeriodicalId\":106523,\"journal\":{\"name\":\"Bulletin of the Florida Museum of Natural History\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Florida Museum of Natural History\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58782/flmnh.tkof3493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Florida Museum of Natural History","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58782/flmnh.tkof3493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

上升流对东热带太平洋(ETP)珊瑚礁的发育具有重要的控制作用。上升流区表现出不利于珊瑚生长的条件,如低海面温度和高浊度。全新世晚期,强上升流的巴拿马湾 (GoP)和弱上升流的Chiriquí湾(GoC)的珊瑚礁经历了气候驱动的珊瑚生长和珊瑚礁发育中断,而强上升流加剧了GoP的这种中断。大海区强劲的上升流现在起到缓冲热应力的作用,为气候变暖提供了避难所,而大海区的珊瑚极易受到热应力增加的影响。利用生态调查和古生态资料,我们量化了这两个海湾的珊瑚礁的钙化和生物侵蚀过程,建立了碳酸盐收支模型。我们确定了每个海湾的珊瑚礁的珊瑚礁增长潜力(RAP),以预测它们跟上当前和预测的未来海平面上升速度的能力。平均而言,GoP中的珊瑚礁平均RAP为5.5毫米/年,如果二氧化碳排放量在代表性浓度路径(rcp) 2.6和4.5下减少,这将足以跟上未来海平面上升的速度。相比之下,GoC珊瑚礁的平均RAP仅为0.3毫米/年,甚至不足以跟上巴拿马当代海平面上升速度(1.4毫米/年)。此外,即使任何一个海湾的珊瑚礁都能达到100%的珊瑚覆盖率,它们都没有能力跟上rcp8.5的步伐。虽然共和党应该在不久的将来支持珊瑚礁的发展,但减少温室气体排放对于确保珊瑚礁的持续增长和促进那些易受净侵蚀的珊瑚礁的恢复至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Climate Change and The Persistence of Coral-Reef Development in Upwelling Zones
Upwelling exerts a major control on coral-reef development in the eastern tropical Pacific (ETP). Upwelling zones exhibit conditions that are detrimental to coral growth, such as low sea-surface temperatures and high levels of turbidity. During the late Holocene, the reefs in the strongly upwelling Gulf of Panamá (GoP) and the weakly upwelling Gulf of Chiriquí (GoC) experienced a climate-driven hiatus in coral growth and reef development, and strong upwelling exacerbated this hiatus in the GoP. Strong upwelling in the GoP is now acting as a buffer against thermal stress, providing a refuge from climatic warming, whereas corals in the GoC are highly vulnerable to increased thermal stress. Using ecological surveys and paleoecological data, we quantified calcification and bioerosion processes for the reefs in these two gulfs to develop carbonate-budget models. We determined the reef-accretion potential (RAP) for reefs in each gulf to project their capacity to keep pace with current and predicted future rates of sea-level rise. On average, reefs in the GoP exhibited an average RAP of 5.5 mm yr-1, which would be enough to keep pace with future rates of sea-level rise if CO2 emissions were reduced under representative concentration pathways (RCPs) 2.6 and 4.5. In contrast, reefs in the GoC exhibited an average RAP of only 0.3 mm yr-1, which is not even enough to keep pace with contemporary rates of sea-level rise in Panamá (1.4 mm yr-1). Furthermore, even if the reefs in either gulf could achieve 100% coral cover, none of them has the capacity to keep pace with RCP 8.5. Although the GoP should support reef development in the near future, reducing greenhouse-gas emissions will be essential to ensure the persistence of accreting reefs and promote the recovery of those vulnerable to net erosion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Body Size Estimation in Toads (Anura: Bufonidae): Applicability to the Fossil Record Human-Driven Diversity Changes in Caribbean Parrots Across the Holocene Coyotes Reveal Baseline Nitrogen Decline Across End-Pleistocene Ecosystem Collapse Integrating Paleo, Historical, Archeological, and Traditional Ecological Knowledge Data into Caribbean Coral Reef Management Monitors with Memories: Death Assemblages Record a Century of Wastewater Pollution and Remediation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1