工业机器人直接教学数据的特征点识别

Taeyong Choi, Chanhun Park, J. Kyung
{"title":"工业机器人直接教学数据的特征点识别","authors":"Taeyong Choi, Chanhun Park, J. Kyung","doi":"10.1109/URAI.2011.6146014","DOIUrl":null,"url":null,"abstract":"Direct teaching in the industrial robot are the novel technique to teach manipulator with easy usage. However, teaching data by human hand cannot help having large noise error ranged low and high frequency. To use teaching data, post processing to correct teaching trajectory are required. Here, the intuitive feature point recognition method to rebuild teaching data with curvature information is proposed.","PeriodicalId":385925,"journal":{"name":"2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Feature point recognition for the direct teaching data in industrial robot\",\"authors\":\"Taeyong Choi, Chanhun Park, J. Kyung\",\"doi\":\"10.1109/URAI.2011.6146014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direct teaching in the industrial robot are the novel technique to teach manipulator with easy usage. However, teaching data by human hand cannot help having large noise error ranged low and high frequency. To use teaching data, post processing to correct teaching trajectory are required. Here, the intuitive feature point recognition method to rebuild teaching data with curvature information is proposed.\",\"PeriodicalId\":385925,\"journal\":{\"name\":\"2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URAI.2011.6146014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URAI.2011.6146014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在工业机器人中直接教学是一种易于使用的机械手教学新技术。然而,人工教学数据难免存在较大的低频和高频噪声误差。为了利用教学数据,需要对教学数据进行后处理以纠正教学轨迹。本文提出了一种基于曲率信息的直观特征点识别方法来重建教学数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature point recognition for the direct teaching data in industrial robot
Direct teaching in the industrial robot are the novel technique to teach manipulator with easy usage. However, teaching data by human hand cannot help having large noise error ranged low and high frequency. To use teaching data, post processing to correct teaching trajectory are required. Here, the intuitive feature point recognition method to rebuild teaching data with curvature information is proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
People tracking method for a mobile robot with laser scanner and omni directional camera Building a hierarchical robot task from multiple task procedures Probabilistic shape vision for embedded systems Inverse Kinematics solution of PUMA 560 robot arm using ANFIS Implementation of smartphone environment remote control and monitoring system for Android operating system-based robot platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1