测量EVA宇航服手臂肘部扭矩和接触压力的机械臂设计

Lewis J. Simms, Dillon Colt Hall, B. Dunbar, R. Ambrose
{"title":"测量EVA宇航服手臂肘部扭矩和接触压力的机械臂设计","authors":"Lewis J. Simms, Dillon Colt Hall, B. Dunbar, R. Ambrose","doi":"10.1109/AERO55745.2023.10115920","DOIUrl":null,"url":null,"abstract":"NASA awarded the Exploration Extravehicular Activity Services (xEVAS) contract to develop the next generation of EVA suits to be used in Low Earth Orbit (LEO) and on the Artemis Lunar missions. These new EVA suits must protect the astronauts in the extreme environments of LEO and the Moon, while also providing the mobility to support EVA operations, such as surface exploration or spacecraft maintenance. Current testing of spacesuits to ensure sufficient mobility and comfort for the astronauts during EVA is performed with the crewmember in the suit, either in 1 g or in a neutral buoyancy environment. An alternative method of evaluating the mobility and comfort of EVA suits would be to use robotic systems to measure various fit and performance metrics. Robotic testing of spacesuits has historically been limited to either measuring the torque about a joint or measuring the contact pressure between a limb and the suit, but never both simultaneously. Merging the two measurements into a single test would provide essential data for predicting the performance of spacesuits. In this research, the Robotic Arm for Evaluating Spacesuit Torque and Contact (RAESTAC) was developed to simultaneously capture joint torque at the elbow and contact pressure at the anterior forearm, anterior bicep, and olecranon of the ulna. The system incorporates a 3D printed arm into an inflated lower arm pressure garment assembly, modeled after the Extravehicular Mobility Unit (EMU) used on the International Space Station (ISS). Driven by cables attached to a servo motor and gear train assembly, the RAESTAC system rotates the 3D printed arm at the elbow through a 120-degree arc, simulating the elbow angle that an astronaut might require to reach their Display and Control Module (DCM). To evaluate the effect of individual arm anthropometrics on “performance”, a 3dMD photogrammetric scanner was used to capture a digital scan of a subject's arm from the acromioclavicular joint to the tip of the distal phalanx of the third digit. This scan was then separated at the elbow joint and manipulated to incorporate a one degree of freedom (DOF) pin joint with ball bearings. Steel wire cables were routed through the arm and connected to S-type load cells and the servo motor/gear train. The torque about the elbow joint was calculated using the moment arm and the tension in the cable. Three Tekscan I-scan pressure mapping sensors were used to measure contact pressure between the 3D printed arm and the pressurized garment at the three locations. The RAESTAC system was also used to test how torque and contact pressure were affected by varying the arm geometries in a single suit arm design. Two subject's arms were scanned and tested using the same simulated EMU lower arm. It is concluded that RAESTAC may be used to evaluate the effects of arm suit design on specific subjects and can therefore be used to iterate and inform the design of future EVA suits.","PeriodicalId":344285,"journal":{"name":"2023 IEEE Aerospace Conference","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Design of a Robotic Arm to Measure Elbow Torque and Contact Pressures in an EVA Suit Arm\",\"authors\":\"Lewis J. Simms, Dillon Colt Hall, B. Dunbar, R. Ambrose\",\"doi\":\"10.1109/AERO55745.2023.10115920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NASA awarded the Exploration Extravehicular Activity Services (xEVAS) contract to develop the next generation of EVA suits to be used in Low Earth Orbit (LEO) and on the Artemis Lunar missions. These new EVA suits must protect the astronauts in the extreme environments of LEO and the Moon, while also providing the mobility to support EVA operations, such as surface exploration or spacecraft maintenance. Current testing of spacesuits to ensure sufficient mobility and comfort for the astronauts during EVA is performed with the crewmember in the suit, either in 1 g or in a neutral buoyancy environment. An alternative method of evaluating the mobility and comfort of EVA suits would be to use robotic systems to measure various fit and performance metrics. Robotic testing of spacesuits has historically been limited to either measuring the torque about a joint or measuring the contact pressure between a limb and the suit, but never both simultaneously. Merging the two measurements into a single test would provide essential data for predicting the performance of spacesuits. In this research, the Robotic Arm for Evaluating Spacesuit Torque and Contact (RAESTAC) was developed to simultaneously capture joint torque at the elbow and contact pressure at the anterior forearm, anterior bicep, and olecranon of the ulna. The system incorporates a 3D printed arm into an inflated lower arm pressure garment assembly, modeled after the Extravehicular Mobility Unit (EMU) used on the International Space Station (ISS). Driven by cables attached to a servo motor and gear train assembly, the RAESTAC system rotates the 3D printed arm at the elbow through a 120-degree arc, simulating the elbow angle that an astronaut might require to reach their Display and Control Module (DCM). To evaluate the effect of individual arm anthropometrics on “performance”, a 3dMD photogrammetric scanner was used to capture a digital scan of a subject's arm from the acromioclavicular joint to the tip of the distal phalanx of the third digit. This scan was then separated at the elbow joint and manipulated to incorporate a one degree of freedom (DOF) pin joint with ball bearings. Steel wire cables were routed through the arm and connected to S-type load cells and the servo motor/gear train. The torque about the elbow joint was calculated using the moment arm and the tension in the cable. Three Tekscan I-scan pressure mapping sensors were used to measure contact pressure between the 3D printed arm and the pressurized garment at the three locations. The RAESTAC system was also used to test how torque and contact pressure were affected by varying the arm geometries in a single suit arm design. Two subject's arms were scanned and tested using the same simulated EMU lower arm. It is concluded that RAESTAC may be used to evaluate the effects of arm suit design on specific subjects and can therefore be used to iterate and inform the design of future EVA suits.\",\"PeriodicalId\":344285,\"journal\":{\"name\":\"2023 IEEE Aerospace Conference\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO55745.2023.10115920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO55745.2023.10115920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

NASA授予了探索舱外活动服务(xEVAS)合同,以开发用于低地球轨道(LEO)和阿尔忒弥斯月球任务的下一代EVA服。这些新的EVA宇航服必须保护宇航员在LEO和月球的极端环境中,同时还提供机动性来支持EVA操作,如表面探索或航天器维护。为了确保宇航员在EVA期间有足够的机动性和舒适性,目前的宇航服测试是在1g或中性浮力环境下进行的。评估EVA宇航服的移动性和舒适性的另一种方法是使用机器人系统来测量各种适合度和性能指标。机器人对宇航服的测试一直局限于测量关节的扭矩或肢体与宇航服之间的接触压力,但从来没有同时进行过这两项测试。将这两项测量合并为一个测试将为预测航天服的性能提供重要数据。在这项研究中,开发了用于评估航天服扭矩和接触的机械臂(RAESTAC),以同时捕获肘部的关节扭矩和前臂前部、肱二头肌前部和尺骨鹰嘴的接触压力。该系统模仿国际空间站(ISS)上使用的舱外移动单元(EMU),将3D打印的手臂集成到充气的下臂压力服装组件中。RAESTAC系统通过连接到伺服电机和齿轮传动总成的电缆驱动,将3D打印的手臂在肘部旋转120度弧度,模拟宇航员可能需要到达显示和控制模块(DCM)的肘部角度。为了评估个体手臂人体测量对“性能”的影响,使用3dMD摄影测量扫描仪对受试者的手臂进行了从肩锁关节到第三指远端指骨尖端的数字扫描。然后在肘关节处分离该扫描,并进行操作,将一个自由度(DOF)的滚珠轴承销关节结合在一起。钢丝电缆穿过机械臂,连接到s型称重传感器和伺服电机/齿轮传动系统。利用力臂和索张力计算了弯头处的力矩。使用三个Tekscan I-scan压力映射传感器来测量3D打印手臂和加压服装在三个位置之间的接触压力。RAESTAC系统还用于测试在单一套装手臂设计中,不同手臂几何形状对扭矩和接触压力的影响。两名受试者的手臂被扫描,并使用相同的模拟EMU下臂进行测试。综上所述,RAESTAC可用于评估手臂服设计对特定受试者的影响,因此可用于迭代并为未来EVA服的设计提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Design of a Robotic Arm to Measure Elbow Torque and Contact Pressures in an EVA Suit Arm
NASA awarded the Exploration Extravehicular Activity Services (xEVAS) contract to develop the next generation of EVA suits to be used in Low Earth Orbit (LEO) and on the Artemis Lunar missions. These new EVA suits must protect the astronauts in the extreme environments of LEO and the Moon, while also providing the mobility to support EVA operations, such as surface exploration or spacecraft maintenance. Current testing of spacesuits to ensure sufficient mobility and comfort for the astronauts during EVA is performed with the crewmember in the suit, either in 1 g or in a neutral buoyancy environment. An alternative method of evaluating the mobility and comfort of EVA suits would be to use robotic systems to measure various fit and performance metrics. Robotic testing of spacesuits has historically been limited to either measuring the torque about a joint or measuring the contact pressure between a limb and the suit, but never both simultaneously. Merging the two measurements into a single test would provide essential data for predicting the performance of spacesuits. In this research, the Robotic Arm for Evaluating Spacesuit Torque and Contact (RAESTAC) was developed to simultaneously capture joint torque at the elbow and contact pressure at the anterior forearm, anterior bicep, and olecranon of the ulna. The system incorporates a 3D printed arm into an inflated lower arm pressure garment assembly, modeled after the Extravehicular Mobility Unit (EMU) used on the International Space Station (ISS). Driven by cables attached to a servo motor and gear train assembly, the RAESTAC system rotates the 3D printed arm at the elbow through a 120-degree arc, simulating the elbow angle that an astronaut might require to reach their Display and Control Module (DCM). To evaluate the effect of individual arm anthropometrics on “performance”, a 3dMD photogrammetric scanner was used to capture a digital scan of a subject's arm from the acromioclavicular joint to the tip of the distal phalanx of the third digit. This scan was then separated at the elbow joint and manipulated to incorporate a one degree of freedom (DOF) pin joint with ball bearings. Steel wire cables were routed through the arm and connected to S-type load cells and the servo motor/gear train. The torque about the elbow joint was calculated using the moment arm and the tension in the cable. Three Tekscan I-scan pressure mapping sensors were used to measure contact pressure between the 3D printed arm and the pressurized garment at the three locations. The RAESTAC system was also used to test how torque and contact pressure were affected by varying the arm geometries in a single suit arm design. Two subject's arms were scanned and tested using the same simulated EMU lower arm. It is concluded that RAESTAC may be used to evaluate the effects of arm suit design on specific subjects and can therefore be used to iterate and inform the design of future EVA suits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Mission for Education and Multimedia Engagement: Breaking the Barriers to Satellite Education TID Testing of COTS-based, Two-Phase, Point-of-Load Converters for Aerospace Applications Point-Source Target Detection and Localization in Single-Frame Infrared Imagery Comparative Analysis of Different Profiles of Riblets on an Airfoil using Large Eddy Simulations A Receiver-Independent GNSS Smart Antenna for Simultaneous Jamming and Spoofing Protection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1