使用深度学习技术识别年龄和性别

Margi Patel, Upendra Singh
{"title":"使用深度学习技术识别年龄和性别","authors":"Margi Patel, Upendra Singh","doi":"10.1109/ICSMDI57622.2023.00052","DOIUrl":null,"url":null,"abstract":"Gender classification is popular because it includes information about male and female social activities. Faces make it difficult to derive gender-discriminating visuals. Gender classification is based on looks. Automatic gender classification is popular because genders include rich social information. Classification has grown increasingly important in many industries. In a conservative society, gender classification can be usedin certain contexts. Identifying gender type is crucial to keeping extremists out of safe locations, especially in sensitive areas. A similar technique is utilized in female-only railway carriages, gender-specific marketing, and temples. Biometrics debates gender classification from facial pictures. Traditional ways categorize hand-crafted features globally and locally. These gender-identification systems need subject knowledge and are ineffective. Human gender identification is easy, but machines struggle. We listed numerous gender classification pre-processing approaches, such as contrast and brightness normalization. To create a gender and age classification framework Deep Belief Networks employs Shifted Filter Responses to identify features. The suggested model achieves 98% and 99% accuracy on the benchmark dataset.","PeriodicalId":373017,"journal":{"name":"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Age and Gender Recognition using Deep Learning Technique\",\"authors\":\"Margi Patel, Upendra Singh\",\"doi\":\"10.1109/ICSMDI57622.2023.00052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gender classification is popular because it includes information about male and female social activities. Faces make it difficult to derive gender-discriminating visuals. Gender classification is based on looks. Automatic gender classification is popular because genders include rich social information. Classification has grown increasingly important in many industries. In a conservative society, gender classification can be usedin certain contexts. Identifying gender type is crucial to keeping extremists out of safe locations, especially in sensitive areas. A similar technique is utilized in female-only railway carriages, gender-specific marketing, and temples. Biometrics debates gender classification from facial pictures. Traditional ways categorize hand-crafted features globally and locally. These gender-identification systems need subject knowledge and are ineffective. Human gender identification is easy, but machines struggle. We listed numerous gender classification pre-processing approaches, such as contrast and brightness normalization. To create a gender and age classification framework Deep Belief Networks employs Shifted Filter Responses to identify features. The suggested model achieves 98% and 99% accuracy on the benchmark dataset.\",\"PeriodicalId\":373017,\"journal\":{\"name\":\"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)\",\"volume\":\"2012 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSMDI57622.2023.00052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSMDI57622.2023.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

性别分类很受欢迎,因为它包含了男性和女性社会活动的信息。人脸使得很难得出性别歧视的视觉效果。性别分类是基于外貌的。由于性别包含了丰富的社会信息,自动性别分类很受欢迎。分类在许多行业中变得越来越重要。在一个保守的社会中,性别分类可以在某些情况下使用。识别性别类型对于防止极端分子进入安全地点至关重要,尤其是在敏感地区。女性专用的火车车厢、针对性别的营销和寺庙也采用了类似的技术。生物识别技术从面部图片中争论性别分类。传统方法将手工制作的特征分为全局和局部。这些性别识别系统需要学科知识,而且效率低下。人类的性别识别很容易,但机器却很难。我们列出了许多性别分类预处理方法,如对比度和亮度归一化。为了创建性别和年龄分类框架,深度信念网络采用移位过滤响应来识别特征。建议的模型在基准数据集上达到98%和99%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Age and Gender Recognition using Deep Learning Technique
Gender classification is popular because it includes information about male and female social activities. Faces make it difficult to derive gender-discriminating visuals. Gender classification is based on looks. Automatic gender classification is popular because genders include rich social information. Classification has grown increasingly important in many industries. In a conservative society, gender classification can be usedin certain contexts. Identifying gender type is crucial to keeping extremists out of safe locations, especially in sensitive areas. A similar technique is utilized in female-only railway carriages, gender-specific marketing, and temples. Biometrics debates gender classification from facial pictures. Traditional ways categorize hand-crafted features globally and locally. These gender-identification systems need subject knowledge and are ineffective. Human gender identification is easy, but machines struggle. We listed numerous gender classification pre-processing approaches, such as contrast and brightness normalization. To create a gender and age classification framework Deep Belief Networks employs Shifted Filter Responses to identify features. The suggested model achieves 98% and 99% accuracy on the benchmark dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Decentralized Flight Insurance Smart Contract Application using Blockchain Stock Market Prediction using Machine Learning Technique HarGharSolar : Recognition of Potential Rooftop PhotoVoltaic Arrays Using Geospatial Imagery for Diverse Climate Zones. Artificial Intelligence Powered Early Detection of Heart Disease Network Intrusion Detection using Machine Learning Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1