{"title":"一种新的高效支持向量机及其在眼睛实时精确定位中的应用","authors":"Shuo Chen, Chengjun Liu","doi":"10.1109/IJCNN.2011.6033547","DOIUrl":null,"url":null,"abstract":"For complicated classification problems, the standard Support Vector Machine (SVM) is likely to be complex and thus the classification efficiency is low. In this paper, we propose a new efficient SVM (eSVM), which is based on the idea of minimizing the margin of misclassified samples. Compared with the conventional SVM, the eSVM is defined on fewer support vectors and thus can achieve much faster classification speed and comparable or even higher classification accuracy. We then present a real-time accurate eye localization system using the eSVM together with color information and 2D Haar wavelet features. Experiments on some public data sets show that (i) the eSVM significantly improves the efficiency of the standard SVM without sacrificing its accuracy and (ii) the eye localization system has real-time speed and higher detection accuracy than some state-of-the-art approaches.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A new efficient SVM and its application to real-time accurate eye localization\",\"authors\":\"Shuo Chen, Chengjun Liu\",\"doi\":\"10.1109/IJCNN.2011.6033547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For complicated classification problems, the standard Support Vector Machine (SVM) is likely to be complex and thus the classification efficiency is low. In this paper, we propose a new efficient SVM (eSVM), which is based on the idea of minimizing the margin of misclassified samples. Compared with the conventional SVM, the eSVM is defined on fewer support vectors and thus can achieve much faster classification speed and comparable or even higher classification accuracy. We then present a real-time accurate eye localization system using the eSVM together with color information and 2D Haar wavelet features. Experiments on some public data sets show that (i) the eSVM significantly improves the efficiency of the standard SVM without sacrificing its accuracy and (ii) the eye localization system has real-time speed and higher detection accuracy than some state-of-the-art approaches.\",\"PeriodicalId\":415833,\"journal\":{\"name\":\"The 2011 International Joint Conference on Neural Networks\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2011 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2011.6033547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new efficient SVM and its application to real-time accurate eye localization
For complicated classification problems, the standard Support Vector Machine (SVM) is likely to be complex and thus the classification efficiency is low. In this paper, we propose a new efficient SVM (eSVM), which is based on the idea of minimizing the margin of misclassified samples. Compared with the conventional SVM, the eSVM is defined on fewer support vectors and thus can achieve much faster classification speed and comparable or even higher classification accuracy. We then present a real-time accurate eye localization system using the eSVM together with color information and 2D Haar wavelet features. Experiments on some public data sets show that (i) the eSVM significantly improves the efficiency of the standard SVM without sacrificing its accuracy and (ii) the eye localization system has real-time speed and higher detection accuracy than some state-of-the-art approaches.