应用于医学图像的自动分类系统

B. Qiu, Chang Xu, Q. Tian
{"title":"应用于医学图像的自动分类系统","authors":"B. Qiu, Chang Xu, Q. Tian","doi":"10.1109/ICME.2006.262713","DOIUrl":null,"url":null,"abstract":"In this paper, a multi-class classification system is developed for medical images. We have mainly explored ways to use different image features, and compared two classifiers: principle component analysis (PCA) and supporting vector machines (SVM) with RBF (radial basis functions) kernels. Experimental results showed that SVM with a combination of the middle-level blob feature and low-level features (down-scaled images and their texture maps) achieved the highest recognition accuracy. Using the 9000 given training images from ImageCLEFOS, our proposed method has achieved a recognition rate of 88.9% in a simulation experiment. And according to the evaluation result from the ImageCLEFOS organizer, our method has achieved a recognition rate of 82% over its 1000 testing images","PeriodicalId":339258,"journal":{"name":"2006 IEEE International Conference on Multimedia and Expo","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"An Automatic Classification System Applied in Medical Images\",\"authors\":\"B. Qiu, Chang Xu, Q. Tian\",\"doi\":\"10.1109/ICME.2006.262713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a multi-class classification system is developed for medical images. We have mainly explored ways to use different image features, and compared two classifiers: principle component analysis (PCA) and supporting vector machines (SVM) with RBF (radial basis functions) kernels. Experimental results showed that SVM with a combination of the middle-level blob feature and low-level features (down-scaled images and their texture maps) achieved the highest recognition accuracy. Using the 9000 given training images from ImageCLEFOS, our proposed method has achieved a recognition rate of 88.9% in a simulation experiment. And according to the evaluation result from the ImageCLEFOS organizer, our method has achieved a recognition rate of 82% over its 1000 testing images\",\"PeriodicalId\":339258,\"journal\":{\"name\":\"2006 IEEE International Conference on Multimedia and Expo\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2006.262713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2006.262713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文开发了一种医学图像的多类分类系统。我们主要探索了使用不同图像特征的方法,并比较了两种分类器:主成分分析(PCA)和支持向量机(SVM)与RBF(径向基函数)核。实验结果表明,结合中级blob特征和低级特征(降尺度图像及其纹理图)的SVM识别准确率最高。在ImageCLEFOS给出的9000张训练图像的模拟实验中,我们提出的方法达到了88.9%的识别率。根据ImageCLEFOS组织者的评估结果,我们的方法在1000张测试图像中达到了82%的识别率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Automatic Classification System Applied in Medical Images
In this paper, a multi-class classification system is developed for medical images. We have mainly explored ways to use different image features, and compared two classifiers: principle component analysis (PCA) and supporting vector machines (SVM) with RBF (radial basis functions) kernels. Experimental results showed that SVM with a combination of the middle-level blob feature and low-level features (down-scaled images and their texture maps) achieved the highest recognition accuracy. Using the 9000 given training images from ImageCLEFOS, our proposed method has achieved a recognition rate of 88.9% in a simulation experiment. And according to the evaluation result from the ImageCLEFOS organizer, our method has achieved a recognition rate of 82% over its 1000 testing images
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acoustic Echo Cancellation in a Channel with Rapidly Varying Gain A Two-Layer Graphical Model for Combined Video Shot and Scene Boundary Detection SCCS: A Scalable Clustered Camera System for Multiple Object Tracking Communicating Via Message Passing Interface Identification and Detection of the Same Scene Based on Flash Light Patterns Bandwidth Estimation in Wireless Lans for Multimedia Streaming Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1