使用分布式触发器进行复杂的检测

Ling Huang, M. Garofalakis, J. Hellerstein, A. Joseph, N. Taft
{"title":"使用分布式触发器进行复杂的检测","authors":"Ling Huang, M. Garofalakis, J. Hellerstein, A. Joseph, N. Taft","doi":"10.1145/1162678.1162684","DOIUrl":null,"url":null,"abstract":"Recent research has proposed efficient protocols for distributed triggers, which can be used in monitoring infrastructures to maintain system-wide invariants and detect abnormal events with minimal communication overhead. To date, however, this work has been limited to simple thresholds on distributed aggregate functions like sums and counts. In this paper, we present our initial results that show how to use these simple threshold triggers to enable sophisticated anomaly detection in near-real time, with modest communication overheads. We design a distributed protocol to detect \"unusual traffic patterns\" buried in an Origin-Destination network flow matrix that: a) uses a Principal Components Analysis decomposition technique to detect anomalies via a threshold function on residual signals [10]; and b) efficiently tracks this threshold function in near-real time using a simple distributed protocol. In addition, we speculate that such simple thresholding can be a powerful tool for a variety of monitoring tasks beyond the one presented here, and we propose an agenda to explore additional sophisticated applications.","PeriodicalId":216113,"journal":{"name":"Annual ACM Workshop on Mining Network Data","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Toward sophisticated detection with distributed triggers\",\"authors\":\"Ling Huang, M. Garofalakis, J. Hellerstein, A. Joseph, N. Taft\",\"doi\":\"10.1145/1162678.1162684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research has proposed efficient protocols for distributed triggers, which can be used in monitoring infrastructures to maintain system-wide invariants and detect abnormal events with minimal communication overhead. To date, however, this work has been limited to simple thresholds on distributed aggregate functions like sums and counts. In this paper, we present our initial results that show how to use these simple threshold triggers to enable sophisticated anomaly detection in near-real time, with modest communication overheads. We design a distributed protocol to detect \\\"unusual traffic patterns\\\" buried in an Origin-Destination network flow matrix that: a) uses a Principal Components Analysis decomposition technique to detect anomalies via a threshold function on residual signals [10]; and b) efficiently tracks this threshold function in near-real time using a simple distributed protocol. In addition, we speculate that such simple thresholding can be a powerful tool for a variety of monitoring tasks beyond the one presented here, and we propose an agenda to explore additional sophisticated applications.\",\"PeriodicalId\":216113,\"journal\":{\"name\":\"Annual ACM Workshop on Mining Network Data\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual ACM Workshop on Mining Network Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1162678.1162684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual ACM Workshop on Mining Network Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1162678.1162684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

最近的研究提出了高效的分布式触发器协议,该协议可用于监控基础设施,以最小的通信开销维护系统范围的不变性并检测异常事件。然而,到目前为止,这项工作仅限于分布式聚合函数(如sum和counts)的简单阈值。在本文中,我们展示了我们的初步结果,展示了如何使用这些简单的阈值触发器在接近实时的情况下,以适度的通信开销实现复杂的异常检测。我们设计了一个分布式协议来检测隐藏在始发-目的地网络流矩阵中的“异常流量模式”,该协议:a)使用主成分分析分解技术通过残余信号的阈值函数检测异常[10];b)使用一个简单的分布式协议,在接近实时的情况下有效地跟踪这个阈值函数。此外,我们推测这种简单的阈值可以成为除本文介绍的之外的各种监视任务的强大工具,并且我们提出了探索其他复杂应用程序的议程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward sophisticated detection with distributed triggers
Recent research has proposed efficient protocols for distributed triggers, which can be used in monitoring infrastructures to maintain system-wide invariants and detect abnormal events with minimal communication overhead. To date, however, this work has been limited to simple thresholds on distributed aggregate functions like sums and counts. In this paper, we present our initial results that show how to use these simple threshold triggers to enable sophisticated anomaly detection in near-real time, with modest communication overheads. We design a distributed protocol to detect "unusual traffic patterns" buried in an Origin-Destination network flow matrix that: a) uses a Principal Components Analysis decomposition technique to detect anomalies via a threshold function on residual signals [10]; and b) efficiently tracks this threshold function in near-real time using a simple distributed protocol. In addition, we speculate that such simple thresholding can be a powerful tool for a variety of monitoring tasks beyond the one presented here, and we propose an agenda to explore additional sophisticated applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time monitoring of SIP infrastructure using message classification Authentication anomaly detection: a case study on a virtual private network SIP-based VoIP traffic behavior profiling and its applications Comparison of anomaly signal quality in common detection metrics Identifying and tracking suspicious activities through IP gray space analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1