印度东北部八个地区,特别是锡金地区的地形雨量统计分析

Pooja Raj Verma, Amrita Biswas, S. Chakraborty
{"title":"印度东北部八个地区,特别是锡金地区的地形雨量统计分析","authors":"Pooja Raj Verma, Amrita Biswas, S. Chakraborty","doi":"10.11591/ijict.v11i3.pp185-192","DOIUrl":null,"url":null,"abstract":"Autoregressive integrated moving average (ARIMA) models are used to predict the rain rate for orographic rainfall over a long period of time, from 1980 to 1918. As the orographic rainfall may cause landslides and other natural disaster issues, So, this study is very important for the analysis of rainfall prediction. In this research, statistical calculations have been done based on the rainfall data for twelve regions of India (Cherrapunji, Darjeling, Dawki, Ghum, Itanagar, Kamchenjunga, Mizoram, Nagaland, Pakyong, Saser Kangri, Slot Kangri, and Tripura) from the eight states, i.e., Sikkim, Meghalaya, West Bengal, Ladakh (Union Territory of India), Arunachal Pradesh, Mizoram, Tripura, and Nagaland) with varying altitude. The model's output is assessed using several error calculations. The model's performance is represented by the fit value, which is reliable for the north-east region of India with increasing altitude. The statistical dependability of the rainfall prediction is shown by the parameters. The lowest value of root mean square error (RMSE) indicates better prediction for orographic rainfall.","PeriodicalId":245958,"journal":{"name":"International Journal of Informatics and Communication Technology (IJ-ICT)","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical analysis of an orographic rainfall for Eight North-East region of India with special focus over Sikkim\",\"authors\":\"Pooja Raj Verma, Amrita Biswas, S. Chakraborty\",\"doi\":\"10.11591/ijict.v11i3.pp185-192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autoregressive integrated moving average (ARIMA) models are used to predict the rain rate for orographic rainfall over a long period of time, from 1980 to 1918. As the orographic rainfall may cause landslides and other natural disaster issues, So, this study is very important for the analysis of rainfall prediction. In this research, statistical calculations have been done based on the rainfall data for twelve regions of India (Cherrapunji, Darjeling, Dawki, Ghum, Itanagar, Kamchenjunga, Mizoram, Nagaland, Pakyong, Saser Kangri, Slot Kangri, and Tripura) from the eight states, i.e., Sikkim, Meghalaya, West Bengal, Ladakh (Union Territory of India), Arunachal Pradesh, Mizoram, Tripura, and Nagaland) with varying altitude. The model's output is assessed using several error calculations. The model's performance is represented by the fit value, which is reliable for the north-east region of India with increasing altitude. The statistical dependability of the rainfall prediction is shown by the parameters. The lowest value of root mean square error (RMSE) indicates better prediction for orographic rainfall.\",\"PeriodicalId\":245958,\"journal\":{\"name\":\"International Journal of Informatics and Communication Technology (IJ-ICT)\",\"volume\":\"2014 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Informatics and Communication Technology (IJ-ICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijict.v11i3.pp185-192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Informatics and Communication Technology (IJ-ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijict.v11i3.pp185-192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自回归综合移动平均(ARIMA)模式用于预测1980 - 1918年长时间的地形降雨率。由于地形降雨可能引起山体滑坡等自然灾害问题,因此,本研究对降雨预测分析具有十分重要的意义。模型的输出是通过几个误差计算来评估的。模型的性能由拟合值来表示,该拟合值对于印度东北部地区随着海拔的增加是可靠的。这些参数表明了降雨预报的统计可靠性。均方根误差(RMSE)最小值表明地形降水预报效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical analysis of an orographic rainfall for Eight North-East region of India with special focus over Sikkim
Autoregressive integrated moving average (ARIMA) models are used to predict the rain rate for orographic rainfall over a long period of time, from 1980 to 1918. As the orographic rainfall may cause landslides and other natural disaster issues, So, this study is very important for the analysis of rainfall prediction. In this research, statistical calculations have been done based on the rainfall data for twelve regions of India (Cherrapunji, Darjeling, Dawki, Ghum, Itanagar, Kamchenjunga, Mizoram, Nagaland, Pakyong, Saser Kangri, Slot Kangri, and Tripura) from the eight states, i.e., Sikkim, Meghalaya, West Bengal, Ladakh (Union Territory of India), Arunachal Pradesh, Mizoram, Tripura, and Nagaland) with varying altitude. The model's output is assessed using several error calculations. The model's performance is represented by the fit value, which is reliable for the north-east region of India with increasing altitude. The statistical dependability of the rainfall prediction is shown by the parameters. The lowest value of root mean square error (RMSE) indicates better prediction for orographic rainfall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Review-based analysis of clustering approaches in a recommendation system Adaptive resource allocation in NOMA-enabled backscatter communications systems Navigating the cyber forensics landscape a review of recent innovations ChatGPT's effect on the job market: how automation affects employment in sectors using ChatGPT for customer service Predicting anomalies in computer networks using autoencoder-based representation learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1