基于WFRFT和EST的双选择性无线衰落信道调制方案的迭代频域均衡

Kun Wang, X. Sha, Yong Li
{"title":"基于WFRFT和EST的双选择性无线衰落信道调制方案的迭代频域均衡","authors":"Kun Wang, X. Sha, Yong Li","doi":"10.1109/PIMRC.2013.6666371","DOIUrl":null,"url":null,"abstract":"Recently, two fire-new modulation schemes: the so-called hybrid carrier (HC) modulation based on weighted-type fractional Fourier transform (WFRFT) and the modulation based on energy spreading transform (EST), have emerged as promising solutions to repress the inter-sample and inter-carrier interference caused by doubly selective channels. In this paper, we propose an iterative frequency domain minimum mean-square-error (MMSE) equalization scheme for systems with WFRFT and EST precoders in order to achieve a better tradeoff between the interference-repression performance and complexity. During the process of the proposed iterative equalization, priors-aided linear MMSE estimations (LME) are performed iteratively in the frequency domain, and the priors are updated in precoding domains. During the iterations, the prior information is estimated more accurately in WFRFT and EST based modulation systems than those in conventional orthogonal frequency division multiplexing (OFDM) and single carrier (SC) systems. Simulation results manifest that the proposed iterative frequency domain MMSE equalization (IFME) scheme outperforms existing iterative MMSE equalization schemes proposed for OFDM and SC architectures in terms of bit-error-ratio.","PeriodicalId":210993,"journal":{"name":"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Iterative frequency-domain equalization for WFRFT and EST based modulation schemes over doubly selective wireless fading channels\",\"authors\":\"Kun Wang, X. Sha, Yong Li\",\"doi\":\"10.1109/PIMRC.2013.6666371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, two fire-new modulation schemes: the so-called hybrid carrier (HC) modulation based on weighted-type fractional Fourier transform (WFRFT) and the modulation based on energy spreading transform (EST), have emerged as promising solutions to repress the inter-sample and inter-carrier interference caused by doubly selective channels. In this paper, we propose an iterative frequency domain minimum mean-square-error (MMSE) equalization scheme for systems with WFRFT and EST precoders in order to achieve a better tradeoff between the interference-repression performance and complexity. During the process of the proposed iterative equalization, priors-aided linear MMSE estimations (LME) are performed iteratively in the frequency domain, and the priors are updated in precoding domains. During the iterations, the prior information is estimated more accurately in WFRFT and EST based modulation systems than those in conventional orthogonal frequency division multiplexing (OFDM) and single carrier (SC) systems. Simulation results manifest that the proposed iterative frequency domain MMSE equalization (IFME) scheme outperforms existing iterative MMSE equalization schemes proposed for OFDM and SC architectures in terms of bit-error-ratio.\",\"PeriodicalId\":210993,\"journal\":{\"name\":\"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIMRC.2013.6666371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2013.6666371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近年来,基于加权型分数傅里叶变换(WFRFT)的混合载波(HC)调制和基于能量扩展变换(EST)的调制两种新的调制方案作为抑制双选择性信道引起的样本间和载波间干扰的有希望的解决方案而出现。在本文中,我们提出了一种迭代频域最小均方误差(MMSE)均衡方案,用于具有WFRFT和EST预编码器的系统,以便在干扰抑制性能和复杂性之间取得更好的平衡。在迭代均衡过程中,在频域迭代进行先验辅助线性MMSE估计(LME),并在预编码域更新先验。在迭代过程中,基于WFRFT和EST的调制系统比传统的正交频分复用(OFDM)和单载波(SC)系统更准确地估计了先验信息。仿真结果表明,所提出的迭代频域MMSE均衡(IFME)方案在误码率方面优于现有的OFDM和SC架构的迭代MMSE均衡方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iterative frequency-domain equalization for WFRFT and EST based modulation schemes over doubly selective wireless fading channels
Recently, two fire-new modulation schemes: the so-called hybrid carrier (HC) modulation based on weighted-type fractional Fourier transform (WFRFT) and the modulation based on energy spreading transform (EST), have emerged as promising solutions to repress the inter-sample and inter-carrier interference caused by doubly selective channels. In this paper, we propose an iterative frequency domain minimum mean-square-error (MMSE) equalization scheme for systems with WFRFT and EST precoders in order to achieve a better tradeoff between the interference-repression performance and complexity. During the process of the proposed iterative equalization, priors-aided linear MMSE estimations (LME) are performed iteratively in the frequency domain, and the priors are updated in precoding domains. During the iterations, the prior information is estimated more accurately in WFRFT and EST based modulation systems than those in conventional orthogonal frequency division multiplexing (OFDM) and single carrier (SC) systems. Simulation results manifest that the proposed iterative frequency domain MMSE equalization (IFME) scheme outperforms existing iterative MMSE equalization schemes proposed for OFDM and SC architectures in terms of bit-error-ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental validation of fog models for FSO under laboratory controlled conditions EWMA-triggered waterfilling for reduced-complexity resource management in ad-hoc connections Sleep scheduling in IEEE 802.16j relay networks A comparison of implicit and explicit channel feedback methods for MU-MIMO WLAN systems Optimization of collaborating secondary users in a cooperative sensing under noise uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1