使用受限玻尔兹曼机模型从多元离散序列数据中学习

J. Hernandez, Andres G. Abad
{"title":"使用受限玻尔兹曼机模型从多元离散序列数据中学习","authors":"J. Hernandez, Andres G. Abad","doi":"10.1109/COLCACI.2018.8484854","DOIUrl":null,"url":null,"abstract":"A restricted Boltzmann machine (RBM) is a generative neural-network model with many novel applications such as collaborative filtering and acoustic modeling. An RBM lacks the capacity to retain memory, making it inappropriate for dynamic data modeling as in time-series analysis. In this paper we address this issue by proposing the p-RBM model, a generalization of the regular RBM model, capable of retaining memory of p past states. We further show how to train the p-RBM model using contrastive divergence and test our model on the problem of predicting the stock market direction considering 100 stocks of the NASDAQ-100 index. Obtained results show that the p-RBM offer promising prediction potential.","PeriodicalId":138992,"journal":{"name":"2018 IEEE 1st Colombian Conference on Applications in Computational Intelligence (ColCACI)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Learning from multivariate discrete sequential data using a restricted Boltzmann machine model\",\"authors\":\"J. Hernandez, Andres G. Abad\",\"doi\":\"10.1109/COLCACI.2018.8484854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A restricted Boltzmann machine (RBM) is a generative neural-network model with many novel applications such as collaborative filtering and acoustic modeling. An RBM lacks the capacity to retain memory, making it inappropriate for dynamic data modeling as in time-series analysis. In this paper we address this issue by proposing the p-RBM model, a generalization of the regular RBM model, capable of retaining memory of p past states. We further show how to train the p-RBM model using contrastive divergence and test our model on the problem of predicting the stock market direction considering 100 stocks of the NASDAQ-100 index. Obtained results show that the p-RBM offer promising prediction potential.\",\"PeriodicalId\":138992,\"journal\":{\"name\":\"2018 IEEE 1st Colombian Conference on Applications in Computational Intelligence (ColCACI)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 1st Colombian Conference on Applications in Computational Intelligence (ColCACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COLCACI.2018.8484854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 1st Colombian Conference on Applications in Computational Intelligence (ColCACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COLCACI.2018.8484854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

受限玻尔兹曼机(RBM)是一种生成神经网络模型,在协同滤波和声学建模等方面有许多新的应用。RBM缺乏保留内存的能力,因此不适合时间序列分析中的动态数据建模。在本文中,我们通过提出p-RBM模型来解决这个问题,p-RBM模型是常规RBM模型的推广,能够保留p个过去状态的记忆。我们进一步展示了如何使用对比散度来训练p-RBM模型,并在考虑纳斯达克100指数的100只股票预测股市方向的问题上测试了我们的模型。结果表明,p-RBM具有很好的预测潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning from multivariate discrete sequential data using a restricted Boltzmann machine model
A restricted Boltzmann machine (RBM) is a generative neural-network model with many novel applications such as collaborative filtering and acoustic modeling. An RBM lacks the capacity to retain memory, making it inappropriate for dynamic data modeling as in time-series analysis. In this paper we address this issue by proposing the p-RBM model, a generalization of the regular RBM model, capable of retaining memory of p past states. We further show how to train the p-RBM model using contrastive divergence and test our model on the problem of predicting the stock market direction considering 100 stocks of the NASDAQ-100 index. Obtained results show that the p-RBM offer promising prediction potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Continuous Surveillance By Tele-consults Based on Monte Carlo Algorithms to Anticipate and Lessen Risk Levels Due to Type-2 Diabetes Complications Applying Data Mining Techniques to Predict Student Dropout: A Case Study Implementation of a neural control system based on PI control for a non-linear process Application of Transfer Learning for Object Recognition Using Convolutional Neural Networks Comparison of Evolutionary Algorithms for Estimation of Parameters of the Equivalent Circuit of an AC Motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1