基于RGB-D数据的颜色引导粗配准方法

Benyue Su, Wei Han, Yusheng Peng, Min Sheng
{"title":"基于RGB-D数据的颜色引导粗配准方法","authors":"Benyue Su, Wei Han, Yusheng Peng, Min Sheng","doi":"10.1109/icvrv.2017.00108","DOIUrl":null,"url":null,"abstract":"This paper proposes a coarse registration method based on RGB-D data. The feature points are obtained from the mixed feature. The corresponding points of the feature points are searched in target point cloud according to the feature descriptor. The feature points are divided into several partitions and the rigid transformation is calculated between the corresponding point pairs in each partition. The optimal rigid transformation is chosen from the rigid transformation of each partition. The mixed feature is constructed by geometric information and color information of the neighborhood points. The feature descriptor is built with the mixed feature and normalized RGB value. The experimental results demonstrated that the method is effective for RGB-D data.","PeriodicalId":187934,"journal":{"name":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Color-Guided Coarse Registration Method Based on RGB-D Data\",\"authors\":\"Benyue Su, Wei Han, Yusheng Peng, Min Sheng\",\"doi\":\"10.1109/icvrv.2017.00108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a coarse registration method based on RGB-D data. The feature points are obtained from the mixed feature. The corresponding points of the feature points are searched in target point cloud according to the feature descriptor. The feature points are divided into several partitions and the rigid transformation is calculated between the corresponding point pairs in each partition. The optimal rigid transformation is chosen from the rigid transformation of each partition. The mixed feature is constructed by geometric information and color information of the neighborhood points. The feature descriptor is built with the mixed feature and normalized RGB value. The experimental results demonstrated that the method is effective for RGB-D data.\",\"PeriodicalId\":187934,\"journal\":{\"name\":\"2017 International Conference on Virtual Reality and Visualization (ICVRV)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Virtual Reality and Visualization (ICVRV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icvrv.2017.00108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icvrv.2017.00108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于RGB-D数据的粗配准方法。从混合特征中获得特征点。根据特征描述符在目标点云中搜索特征点对应的点。将特征点划分为若干分区,计算每个分区中对应点对之间的刚性变换。从每个分区的刚性变换中选择最优的刚性变换。混合特征由相邻点的几何信息和颜色信息构成。特征描述符由混合特征和归一化RGB值构建。实验结果表明,该方法对RGB-D数据是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Color-Guided Coarse Registration Method Based on RGB-D Data
This paper proposes a coarse registration method based on RGB-D data. The feature points are obtained from the mixed feature. The corresponding points of the feature points are searched in target point cloud according to the feature descriptor. The feature points are divided into several partitions and the rigid transformation is calculated between the corresponding point pairs in each partition. The optimal rigid transformation is chosen from the rigid transformation of each partition. The mixed feature is constructed by geometric information and color information of the neighborhood points. The feature descriptor is built with the mixed feature and normalized RGB value. The experimental results demonstrated that the method is effective for RGB-D data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Feature-Enhanced Surfaces from Incomplete Point Cloud with Segmentation and Curve Skeleton Information Efficiently Disassemble-and-Pack for Mechanism Surface Flattening Based on Energy Fabric Deformation Model in Garment Design A Novel Intelligent Thyroid Nodule Diagnosis System over Ultrasound Images Based on Deep Learning A Novel Reconstruction Method of 3D Heart Geometry Atlas Based on Visible Human
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1