基于VGG - 19和迁移学习的皮肤癌分类模型

N. Aburaed, A. Panthakkan, M. Al-Saad, S. Amin, W. Mansoor
{"title":"基于VGG - 19和迁移学习的皮肤癌分类模型","authors":"N. Aburaed, A. Panthakkan, M. Al-Saad, S. Amin, W. Mansoor","doi":"10.1109/ICSPIS51252.2020.9340143","DOIUrl":null,"url":null,"abstract":"Skin cancer is a concerning health issue with yearly increasing numbers. Detecting and classifying cancer type is problematic, especially since patients have to undergo several diagnosis over lengthy periods of time, which hinders early treatment and survival chances. With the aid of digital image processing, features can be extracted to identify skin cancer and its different types. Convolutional Neural Networks (CNNs) recently emerged as powerful autonomous feature extractors, and they have high potential to achieve high accuracy with skin cancer diagnosis. In this paper, two cancer types in addition to one non-cancer type taken from Human Against Machine (HAM10000) dataset are classified using CNN model based on VGG 19 and Transfer Learning technique. The training strategy is explained, tested, and evaluated by calculating the network's overall accuracy and loss.","PeriodicalId":373750,"journal":{"name":"2020 3rd International Conference on Signal Processing and Information Security (ICSPIS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Skin Cancer Classification Model Based on VGG 19 and Transfer Learning\",\"authors\":\"N. Aburaed, A. Panthakkan, M. Al-Saad, S. Amin, W. Mansoor\",\"doi\":\"10.1109/ICSPIS51252.2020.9340143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skin cancer is a concerning health issue with yearly increasing numbers. Detecting and classifying cancer type is problematic, especially since patients have to undergo several diagnosis over lengthy periods of time, which hinders early treatment and survival chances. With the aid of digital image processing, features can be extracted to identify skin cancer and its different types. Convolutional Neural Networks (CNNs) recently emerged as powerful autonomous feature extractors, and they have high potential to achieve high accuracy with skin cancer diagnosis. In this paper, two cancer types in addition to one non-cancer type taken from Human Against Machine (HAM10000) dataset are classified using CNN model based on VGG 19 and Transfer Learning technique. The training strategy is explained, tested, and evaluated by calculating the network's overall accuracy and loss.\",\"PeriodicalId\":373750,\"journal\":{\"name\":\"2020 3rd International Conference on Signal Processing and Information Security (ICSPIS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 3rd International Conference on Signal Processing and Information Security (ICSPIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPIS51252.2020.9340143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Signal Processing and Information Security (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPIS51252.2020.9340143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

皮肤癌是一个令人担忧的健康问题,其人数每年都在增加。诊断和分类癌症是一个问题,特别是因为患者必须在很长一段时间内接受多次诊断,这阻碍了早期治疗和生存机会。在数字图像处理的帮助下,可以提取特征来识别皮肤癌及其不同类型。卷积神经网络(cnn)作为一种功能强大的自主特征提取工具,在皮肤癌诊断方面具有很高的潜力。本文采用基于VGG - 19和迁移学习技术的CNN模型,对人类对抗机器(HAM10000)数据集中的两种癌症类型和一种非癌症类型进行分类。通过计算网络的整体准确性和损失,对训练策略进行了解释、测试和评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Skin Cancer Classification Model Based on VGG 19 and Transfer Learning
Skin cancer is a concerning health issue with yearly increasing numbers. Detecting and classifying cancer type is problematic, especially since patients have to undergo several diagnosis over lengthy periods of time, which hinders early treatment and survival chances. With the aid of digital image processing, features can be extracted to identify skin cancer and its different types. Convolutional Neural Networks (CNNs) recently emerged as powerful autonomous feature extractors, and they have high potential to achieve high accuracy with skin cancer diagnosis. In this paper, two cancer types in addition to one non-cancer type taken from Human Against Machine (HAM10000) dataset are classified using CNN model based on VGG 19 and Transfer Learning technique. The training strategy is explained, tested, and evaluated by calculating the network's overall accuracy and loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Chaos-Based Cryptoystem for Voice Encryption [Copyright notice] The Effect of Obstructive Sleep Apnea on the Cardiovascular Variability Indoor Localization in Multi-Path Environment based on AoA with Particle Filter Introducing a Mobile App to Increase Cybersecurity Awareness in MENA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1