研究利用回声状态网络预测风力发电

Ronaldo Aquino, O. N. Neto, R. B. Souza, M. Lira, Manoel A. Carvalho, Teresa B Ludermir, A. Ferreira
{"title":"研究利用回声状态网络预测风力发电","authors":"Ronaldo Aquino, O. N. Neto, R. B. Souza, M. Lira, Manoel A. Carvalho, Teresa B Ludermir, A. Ferreira","doi":"10.1109/CIES.2014.7011844","DOIUrl":null,"url":null,"abstract":"This paper presents the results of models created for prediction of wind power generation using Echo State Networks (ESN). An echo state network consist of a large, randomly connected neural network, the reservoir, which is driven by an input signal and projects to output units. ESN offer an intuitive methodology for using the temporal processing power of recurrent neural networks without the hassle of training them. The models perform forecasting of wind power generation with 6 hours ahead, discretized by 10 minutes and with 5 days ahead, discretized by 30 minutes. These models use ESNs with spectral radius greater than 1 and even then they can make predictions with good results. The forecast horizons presented here fall in medium-term forecasts, up to five days ahead, which is an appropriate horizon to subsidize the operation planning of power systems. Models that directly predict the wind power generation with ESNs showed promising results.","PeriodicalId":287779,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Investigating the use of Echo State Networks for prediction of wind power generation\",\"authors\":\"Ronaldo Aquino, O. N. Neto, R. B. Souza, M. Lira, Manoel A. Carvalho, Teresa B Ludermir, A. Ferreira\",\"doi\":\"10.1109/CIES.2014.7011844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the results of models created for prediction of wind power generation using Echo State Networks (ESN). An echo state network consist of a large, randomly connected neural network, the reservoir, which is driven by an input signal and projects to output units. ESN offer an intuitive methodology for using the temporal processing power of recurrent neural networks without the hassle of training them. The models perform forecasting of wind power generation with 6 hours ahead, discretized by 10 minutes and with 5 days ahead, discretized by 30 minutes. These models use ESNs with spectral radius greater than 1 and even then they can make predictions with good results. The forecast horizons presented here fall in medium-term forecasts, up to five days ahead, which is an appropriate horizon to subsidize the operation planning of power systems. Models that directly predict the wind power generation with ESNs showed promising results.\",\"PeriodicalId\":287779,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIES.2014.7011844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIES.2014.7011844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文介绍了利用回声状态网络(ESN)建立风力发电预测模型的结果。回声状态网络由一个大的、随机连接的神经网络水库组成,它由输入信号驱动并投射到输出单元。回声状态网络提供了一种直观的方法来使用递归神经网络的时间处理能力,而不需要训练它们。模型对超前6小时、超前10分钟、超前5天、超前30分钟的风力发电进行预测。这些模型使用谱半径大于1的ESNs,即使如此,它们也可以做出良好的预测结果。这里提出的预测范围是中期预测,最多提前五天,这是一个适当的范围,以补贴电力系统的运行规划。用ESNs直接预测风力发电的模型显示出令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating the use of Echo State Networks for prediction of wind power generation
This paper presents the results of models created for prediction of wind power generation using Echo State Networks (ESN). An echo state network consist of a large, randomly connected neural network, the reservoir, which is driven by an input signal and projects to output units. ESN offer an intuitive methodology for using the temporal processing power of recurrent neural networks without the hassle of training them. The models perform forecasting of wind power generation with 6 hours ahead, discretized by 10 minutes and with 5 days ahead, discretized by 30 minutes. These models use ESNs with spectral radius greater than 1 and even then they can make predictions with good results. The forecast horizons presented here fall in medium-term forecasts, up to five days ahead, which is an appropriate horizon to subsidize the operation planning of power systems. Models that directly predict the wind power generation with ESNs showed promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A graph-based signal processing approach for low-rate energy disaggregation GA optimized time delayed feedback control of chaos in a memristor based chaotic circuit Visualizing uncertainty with fuzzy rose diagrams Jump detection using fuzzy logic A Multi-Population Genetic Algorithm to solve multi-objective remote switches allocation problem in distribution networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1