B. Josefsson, Tatiana Polishchuk, V. Polishchuk, Christiane Schmidt
{"title":"调度远程塔台中心的空中交通管制员","authors":"B. Josefsson, Tatiana Polishchuk, V. Polishchuk, Christiane Schmidt","doi":"10.1109/DASC.2017.8102018","DOIUrl":null,"url":null,"abstract":"Remote Tower Service (RTS) is one of the technological and operational solutions delivered for deployment by the Single European Sky ATM Research (SESAR) Programme. This new concept fundamentally changes how operators provide Air Traffic Services, as it becomes possible to control several airports from a single remote center. In such settings an air traffic controller works at a so-called “multiple position” at the Remote Tower Center (RTC), which means that he/she can handle two or more airports from one Remote Tower Module (controller working position). In this paper, we present an optimization framework designed for automation of staff planning at the RTC. We highlight the problems experienced with real airport flight schedules, and present optimal shift assignments for five Swedish airports that were chosen for remote operation.","PeriodicalId":130890,"journal":{"name":"2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC)","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Scheduling air traffic controllers at the remote tower center\",\"authors\":\"B. Josefsson, Tatiana Polishchuk, V. Polishchuk, Christiane Schmidt\",\"doi\":\"10.1109/DASC.2017.8102018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote Tower Service (RTS) is one of the technological and operational solutions delivered for deployment by the Single European Sky ATM Research (SESAR) Programme. This new concept fundamentally changes how operators provide Air Traffic Services, as it becomes possible to control several airports from a single remote center. In such settings an air traffic controller works at a so-called “multiple position” at the Remote Tower Center (RTC), which means that he/she can handle two or more airports from one Remote Tower Module (controller working position). In this paper, we present an optimization framework designed for automation of staff planning at the RTC. We highlight the problems experienced with real airport flight schedules, and present optimal shift assignments for five Swedish airports that were chosen for remote operation.\",\"PeriodicalId\":130890,\"journal\":{\"name\":\"2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC)\",\"volume\":\"133 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC.2017.8102018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2017.8102018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scheduling air traffic controllers at the remote tower center
Remote Tower Service (RTS) is one of the technological and operational solutions delivered for deployment by the Single European Sky ATM Research (SESAR) Programme. This new concept fundamentally changes how operators provide Air Traffic Services, as it becomes possible to control several airports from a single remote center. In such settings an air traffic controller works at a so-called “multiple position” at the Remote Tower Center (RTC), which means that he/she can handle two or more airports from one Remote Tower Module (controller working position). In this paper, we present an optimization framework designed for automation of staff planning at the RTC. We highlight the problems experienced with real airport flight schedules, and present optimal shift assignments for five Swedish airports that were chosen for remote operation.