基于加权多元线性回归算法的LoRaWAN无线定位估计

U. Nwawelu, M. Ahaneku, B. Ezurike
{"title":"基于加权多元线性回归算法的LoRaWAN无线定位估计","authors":"U. Nwawelu, M. Ahaneku, B. Ezurike","doi":"10.4018/ijitn.299369","DOIUrl":null,"url":null,"abstract":"In location based services, Weighted Multiple Linear Regression (WMLR) algorithm is used for radio device position estimation. Nevertheless, WMLR provides coarse location estimate, because weights apportioned to the received signal strength (RSS) for each hearable base station during matrix weight formation are not properly distributed. In an attempt to address the problem articulated above, an improved WMLR that enhanced the accuracy of radio device position estimate is proposed in this work. Min-Max scaling was used to determine the weight for each RSS values logged at different BS, as such forming a refined matrix weight. Public on-site outdoor Long Range Wide Area Network (LoRaWAN) RSS data set was used to assess the improved WMLR estimation algorithm on the basis of accuracy. The location accuracy of the proposed method is validated with the existing WMLR algorithm and Federal Communication Commission (FCC) maximum location error benchmark. Results show that the location accuracy of the improved approach outperformed that of the existing WMLR localization method.","PeriodicalId":120331,"journal":{"name":"Int. J. Interdiscip. Telecommun. Netw.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Weighted Multiple Linear Regression Algorithm for Radiolocation Estimation in LoRaWAN\",\"authors\":\"U. Nwawelu, M. Ahaneku, B. Ezurike\",\"doi\":\"10.4018/ijitn.299369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In location based services, Weighted Multiple Linear Regression (WMLR) algorithm is used for radio device position estimation. Nevertheless, WMLR provides coarse location estimate, because weights apportioned to the received signal strength (RSS) for each hearable base station during matrix weight formation are not properly distributed. In an attempt to address the problem articulated above, an improved WMLR that enhanced the accuracy of radio device position estimate is proposed in this work. Min-Max scaling was used to determine the weight for each RSS values logged at different BS, as such forming a refined matrix weight. Public on-site outdoor Long Range Wide Area Network (LoRaWAN) RSS data set was used to assess the improved WMLR estimation algorithm on the basis of accuracy. The location accuracy of the proposed method is validated with the existing WMLR algorithm and Federal Communication Commission (FCC) maximum location error benchmark. Results show that the location accuracy of the improved approach outperformed that of the existing WMLR localization method.\",\"PeriodicalId\":120331,\"journal\":{\"name\":\"Int. J. Interdiscip. Telecommun. Netw.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Interdiscip. Telecommun. Netw.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijitn.299369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Interdiscip. Telecommun. Netw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitn.299369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在基于位置的业务中,采用加权多元线性回归(Weighted Multiple Linear Regression, WMLR)算法对无线设备进行位置估计。然而,WMLR提供了粗略的位置估计,因为在矩阵权重形成过程中,分配给每个可听基站的接收信号强度(RSS)的权重没有得到适当的分配。为了解决上述问题,本文提出了一种改进的WMLR,提高了无线电设备位置估计的精度。最小-最大缩放法用于确定在不同BS上记录的每个RSS值的权重,从而形成精细的矩阵权重。利用公共现场户外LoRaWAN RSS数据集对改进的WMLR估计算法进行精度评估。用现有的WMLR算法和FCC最大定位误差基准验证了该方法的定位精度。结果表明,改进方法的定位精度优于现有的WMLR定位方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Weighted Multiple Linear Regression Algorithm for Radiolocation Estimation in LoRaWAN
In location based services, Weighted Multiple Linear Regression (WMLR) algorithm is used for radio device position estimation. Nevertheless, WMLR provides coarse location estimate, because weights apportioned to the received signal strength (RSS) for each hearable base station during matrix weight formation are not properly distributed. In an attempt to address the problem articulated above, an improved WMLR that enhanced the accuracy of radio device position estimate is proposed in this work. Min-Max scaling was used to determine the weight for each RSS values logged at different BS, as such forming a refined matrix weight. Public on-site outdoor Long Range Wide Area Network (LoRaWAN) RSS data set was used to assess the improved WMLR estimation algorithm on the basis of accuracy. The location accuracy of the proposed method is validated with the existing WMLR algorithm and Federal Communication Commission (FCC) maximum location error benchmark. Results show that the location accuracy of the improved approach outperformed that of the existing WMLR localization method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tutorial for Space-Time ICI Parallel Cancellation Techniques for OFDM Systems Secure Protocol for Resource-Constrained IoT Device Authentication Cyclotomic Construction of Sparse Code Multiple Access With Improved Diversity Lapa Card: A Smart Membership Card for Authentication, Payments, and Directional Marketing Analysis of ADC Quantization and Clipping Effects on CDMA-OQAM-OFDM-Based WSAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1