MapReduce系统中基于蜜罐的非授权数据访问检测

Huseyin Ulusoy, Murat Kantarcioglu, B. Thuraisingham, L. Khan
{"title":"MapReduce系统中基于蜜罐的非授权数据访问检测","authors":"Huseyin Ulusoy, Murat Kantarcioglu, B. Thuraisingham, L. Khan","doi":"10.1109/ISI.2015.7165951","DOIUrl":null,"url":null,"abstract":"The data processing capabilities of MapReduce systems pioneered with the on-demand scalability of cloud computing have enabled the Big Data revolution. However, the data controllers/owners worried about the privacy and accountability impact of storing their data in the cloud infrastructures as the existing cloud computing solutions provide very limited control on the underlying systems. The intuitive approach - encrypting data before uploading to the cloud - is not applicable to MapReduce computation as the data analytics tasks are ad-hoc defined in the MapReduce environment using general programming languages (e.g, Java) and homomorphic encryption methods that can scale to big data do not exist. In this paper, we address the challenges of determining and detecting unauthorized access to data stored in MapReduce based cloud environments. To this end, we introduce alarm raising honeypots distributed over the data that are not accessed by the authorized MapReduce jobs, but only by the attackers and/or unauthorized users. Our analysis shows that unauthorized data accesses can be detected with reasonable performance in MapReduce based cloud environments.","PeriodicalId":292352,"journal":{"name":"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Honeypot based unauthorized data access detection in MapReduce systems\",\"authors\":\"Huseyin Ulusoy, Murat Kantarcioglu, B. Thuraisingham, L. Khan\",\"doi\":\"10.1109/ISI.2015.7165951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The data processing capabilities of MapReduce systems pioneered with the on-demand scalability of cloud computing have enabled the Big Data revolution. However, the data controllers/owners worried about the privacy and accountability impact of storing their data in the cloud infrastructures as the existing cloud computing solutions provide very limited control on the underlying systems. The intuitive approach - encrypting data before uploading to the cloud - is not applicable to MapReduce computation as the data analytics tasks are ad-hoc defined in the MapReduce environment using general programming languages (e.g, Java) and homomorphic encryption methods that can scale to big data do not exist. In this paper, we address the challenges of determining and detecting unauthorized access to data stored in MapReduce based cloud environments. To this end, we introduce alarm raising honeypots distributed over the data that are not accessed by the authorized MapReduce jobs, but only by the attackers and/or unauthorized users. Our analysis shows that unauthorized data accesses can be detected with reasonable performance in MapReduce based cloud environments.\",\"PeriodicalId\":292352,\"journal\":{\"name\":\"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2015.7165951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2015.7165951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

MapReduce系统的数据处理能力与云计算的按需可扩展性一起开创了大数据革命。然而,数据控制者/所有者担心将数据存储在云基础设施中的隐私和问责制影响,因为现有的云计算解决方案对底层系统的控制非常有限。直观的方法——在上传到云端之前对数据进行加密——并不适用于MapReduce计算,因为数据分析任务是在MapReduce环境中使用通用编程语言(例如Java)特别定义的,并且不存在可以扩展到大数据的同态加密方法。在本文中,我们解决了确定和检测对存储在基于MapReduce的云环境中的数据的未经授权访问的挑战。为此,我们引入了报警蜜罐,这些蜜罐分布在未被授权的MapReduce作业访问,而只有攻击者和/或未经授权的用户访问的数据上。我们的分析表明,在基于MapReduce的云环境中,可以以合理的性能检测未经授权的数据访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Honeypot based unauthorized data access detection in MapReduce systems
The data processing capabilities of MapReduce systems pioneered with the on-demand scalability of cloud computing have enabled the Big Data revolution. However, the data controllers/owners worried about the privacy and accountability impact of storing their data in the cloud infrastructures as the existing cloud computing solutions provide very limited control on the underlying systems. The intuitive approach - encrypting data before uploading to the cloud - is not applicable to MapReduce computation as the data analytics tasks are ad-hoc defined in the MapReduce environment using general programming languages (e.g, Java) and homomorphic encryption methods that can scale to big data do not exist. In this paper, we address the challenges of determining and detecting unauthorized access to data stored in MapReduce based cloud environments. To this end, we introduce alarm raising honeypots distributed over the data that are not accessed by the authorized MapReduce jobs, but only by the attackers and/or unauthorized users. Our analysis shows that unauthorized data accesses can be detected with reasonable performance in MapReduce based cloud environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling emotion entrainment of online users in emergency events Exploring the effect of permission notice on users' initial trust to an application store: The case of China's Android application market Multi-objective evolutionary algorithms and multiagent models for optimizing police dispatch Personality based public sentiment classification in microblog Social sensor analytics: Making sense of network models in social media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1