使用采样降维的快速重复Bug报告检测器训练:在现实世界中使用基于实例的学习进行连续查询

Behzad Soleimani Neysiani, S. Doostali, S. M. Babamir, Zahra Aminoroaya
{"title":"使用采样降维的快速重复Bug报告检测器训练:在现实世界中使用基于实例的学习进行连续查询","authors":"Behzad Soleimani Neysiani, S. Doostali, S. M. Babamir, Zahra Aminoroaya","doi":"10.1109/IKT51791.2020.9345611","DOIUrl":null,"url":null,"abstract":"Duplicate bug report detection (DBRD) is a famous problem in software triage systems like Bugzilla. It is vital to update the internal machine learning (ML) models of DBRD for real-world usage and continuous query of new bug reports. The training phase of ML algorithms is time-consumable and dependent on the training dataset volume. Instance-based learning (IbL) is an ML technique that reduces the number of samples in the training dataset to achieve fast learning for the incremental database. This research introduces a hybrid approach using clustering and straight forward sampling to improve the runtime and validation performance of DBRD. Two bug report datasets of Android and Mozilla Firefox are used to evaluate the proposed approach. The experimental evaluation shows acceptable results and improvement in both runtime and validation performance of DBRD versus the traditional approach without IbL.","PeriodicalId":382725,"journal":{"name":"2020 11th International Conference on Information and Knowledge Technology (IKT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Duplicate Bug Reports Detector Training using Sampling for Dimension Reduction: Using Instance-based Learning for Continous Query in Real-World\",\"authors\":\"Behzad Soleimani Neysiani, S. Doostali, S. M. Babamir, Zahra Aminoroaya\",\"doi\":\"10.1109/IKT51791.2020.9345611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Duplicate bug report detection (DBRD) is a famous problem in software triage systems like Bugzilla. It is vital to update the internal machine learning (ML) models of DBRD for real-world usage and continuous query of new bug reports. The training phase of ML algorithms is time-consumable and dependent on the training dataset volume. Instance-based learning (IbL) is an ML technique that reduces the number of samples in the training dataset to achieve fast learning for the incremental database. This research introduces a hybrid approach using clustering and straight forward sampling to improve the runtime and validation performance of DBRD. Two bug report datasets of Android and Mozilla Firefox are used to evaluate the proposed approach. The experimental evaluation shows acceptable results and improvement in both runtime and validation performance of DBRD versus the traditional approach without IbL.\",\"PeriodicalId\":382725,\"journal\":{\"name\":\"2020 11th International Conference on Information and Knowledge Technology (IKT)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th International Conference on Information and Knowledge Technology (IKT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IKT51791.2020.9345611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th International Conference on Information and Knowledge Technology (IKT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IKT51791.2020.9345611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

重复错误报告检测(DBRD)是Bugzilla等软件分类系统中一个著名的问题。更新DBRD的内部机器学习(ML)模型以适应现实世界的使用和持续查询新的错误报告是至关重要的。机器学习算法的训练阶段非常耗时,并且依赖于训练数据集的数量。基于实例的学习(IbL)是一种机器学习技术,它通过减少训练数据集中的样本数量来实现增量数据库的快速学习。本研究引入了一种使用聚类和直接抽样的混合方法来提高DBRD的运行时和验证性能。使用Android和Mozilla Firefox的两个bug报告数据集来评估建议的方法。实验评估结果表明,与没有IbL的传统方法相比,DBRD的运行时间和验证性能都得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast Duplicate Bug Reports Detector Training using Sampling for Dimension Reduction: Using Instance-based Learning for Continous Query in Real-World
Duplicate bug report detection (DBRD) is a famous problem in software triage systems like Bugzilla. It is vital to update the internal machine learning (ML) models of DBRD for real-world usage and continuous query of new bug reports. The training phase of ML algorithms is time-consumable and dependent on the training dataset volume. Instance-based learning (IbL) is an ML technique that reduces the number of samples in the training dataset to achieve fast learning for the incremental database. This research introduces a hybrid approach using clustering and straight forward sampling to improve the runtime and validation performance of DBRD. Two bug report datasets of Android and Mozilla Firefox are used to evaluate the proposed approach. The experimental evaluation shows acceptable results and improvement in both runtime and validation performance of DBRD versus the traditional approach without IbL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Sentence Ordering Method using BERT Pretrained Model Classical-Quantum Multiple Access Wiretap Channel with Common Message: One-Shot Rate Region Business Process Improvement Challenges: A Systematic Literature Review The risk prediction of heart disease by using neuro-fuzzy and improved GOA Distributed Learning Automata-Based Algorithm for Finding K-Clique in Complex Social Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1