{"title":"基于最近邻的跨项目学习与提交消息生成的相关性研究","authors":"K. Etemadi, Monperrus Martin","doi":"10.1145/3387940.3391488","DOIUrl":null,"url":null,"abstract":"Commit messages play an important role in software maintenance and evolution. Nonetheless, developers often do not produce high-quality messages. A number of commit message generation methods have been proposed in recent years to address this problem. Some of these methods are based on neural machine translation (NMT) techniques. Studies show that the nearest neighbor algorithm (NNGen) outperforms existing NMT-based methods, although NNGen is simpler and faster than NMT. In this paper, we show that NNGen does not take advantage of cross-project learning in the majority of the cases. We also show that there is an even simpler and faster variation of the existing NNGen method which outperforms it in terms of the BLEU_4 score without using cross-project learning.","PeriodicalId":309659,"journal":{"name":"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the Relevance of Cross-project Learning with Nearest Neighbours for Commit Message Generation\",\"authors\":\"K. Etemadi, Monperrus Martin\",\"doi\":\"10.1145/3387940.3391488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Commit messages play an important role in software maintenance and evolution. Nonetheless, developers often do not produce high-quality messages. A number of commit message generation methods have been proposed in recent years to address this problem. Some of these methods are based on neural machine translation (NMT) techniques. Studies show that the nearest neighbor algorithm (NNGen) outperforms existing NMT-based methods, although NNGen is simpler and faster than NMT. In this paper, we show that NNGen does not take advantage of cross-project learning in the majority of the cases. We also show that there is an even simpler and faster variation of the existing NNGen method which outperforms it in terms of the BLEU_4 score without using cross-project learning.\",\"PeriodicalId\":309659,\"journal\":{\"name\":\"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3387940.3391488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3387940.3391488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Relevance of Cross-project Learning with Nearest Neighbours for Commit Message Generation
Commit messages play an important role in software maintenance and evolution. Nonetheless, developers often do not produce high-quality messages. A number of commit message generation methods have been proposed in recent years to address this problem. Some of these methods are based on neural machine translation (NMT) techniques. Studies show that the nearest neighbor algorithm (NNGen) outperforms existing NMT-based methods, although NNGen is simpler and faster than NMT. In this paper, we show that NNGen does not take advantage of cross-project learning in the majority of the cases. We also show that there is an even simpler and faster variation of the existing NNGen method which outperforms it in terms of the BLEU_4 score without using cross-project learning.