具有异构输入的卷积神经网络组合管理系统

Alin-Bogdan Popa, Iulia-Maria Florea, R. Rughinis
{"title":"具有异构输入的卷积神经网络组合管理系统","authors":"Alin-Bogdan Popa, Iulia-Maria Florea, R. Rughinis","doi":"10.1109/roedunet51892.2020.9324859","DOIUrl":null,"url":null,"abstract":"We implement a cryptocurrency portfolio management system based on a convolutional neural network architecture. We train and test several models, each augmented with data from various sources - past market information (price, volume, market capitalization), sentiment information (positive, neutral, negative sentiment scores extracted from online forums), and blockchain technical data (number of blocks and transactions per trading unit, amount paid in fees, block difficulty etc.). We show that augmenting the model with transaction volume history can lead to larger profits and higher Sharpe ratio, and augmenting the model with sentiment information can lead to better risk management.","PeriodicalId":140521,"journal":{"name":"2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolutional Neural Network Portfolio Management System with Heterogeneous Input\",\"authors\":\"Alin-Bogdan Popa, Iulia-Maria Florea, R. Rughinis\",\"doi\":\"10.1109/roedunet51892.2020.9324859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We implement a cryptocurrency portfolio management system based on a convolutional neural network architecture. We train and test several models, each augmented with data from various sources - past market information (price, volume, market capitalization), sentiment information (positive, neutral, negative sentiment scores extracted from online forums), and blockchain technical data (number of blocks and transactions per trading unit, amount paid in fees, block difficulty etc.). We show that augmenting the model with transaction volume history can lead to larger profits and higher Sharpe ratio, and augmenting the model with sentiment information can lead to better risk management.\",\"PeriodicalId\":140521,\"journal\":{\"name\":\"2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/roedunet51892.2020.9324859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/roedunet51892.2020.9324859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们实现了一个基于卷积神经网络架构的加密货币投资组合管理系统。我们训练和测试了几个模型,每个模型都增加了来自不同来源的数据——过去的市场信息(价格、交易量、市值)、情绪信息(从在线论坛中提取的积极、中性、消极情绪得分)和区块链技术数据(每个交易单位的区块数量和交易量、支付的费用金额、区块难度等)。我们表明,用交易量历史增加模型可以带来更大的利润和更高的夏普比率,用情绪信息增加模型可以带来更好的风险管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convolutional Neural Network Portfolio Management System with Heterogeneous Input
We implement a cryptocurrency portfolio management system based on a convolutional neural network architecture. We train and test several models, each augmented with data from various sources - past market information (price, volume, market capitalization), sentiment information (positive, neutral, negative sentiment scores extracted from online forums), and blockchain technical data (number of blocks and transactions per trading unit, amount paid in fees, block difficulty etc.). We show that augmenting the model with transaction volume history can lead to larger profits and higher Sharpe ratio, and augmenting the model with sentiment information can lead to better risk management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Practical analysis of searchable encryption strategies for financial architecture Web Application Honeypot Published in the Wild Logger and Analyser for Modbus-based Industrial Networks Multi-Layer Security Framework for IoT Devices C++ Declarative API – Implementation Overview Within the XRootD Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1