基于错误空间编码的SVM分类器的高效评估

Nisarg Raval, Rashmi Vilas Tonge, C. V. Jawahar
{"title":"基于错误空间编码的SVM分类器的高效评估","authors":"Nisarg Raval, Rashmi Vilas Tonge, C. V. Jawahar","doi":"10.1109/ICPR.2014.755","DOIUrl":null,"url":null,"abstract":"Many computer vision tasks require efficient evaluation of Support Vector Machine (SVM) classifiers on large image databases. Our goal is to efficiently evaluate SVM classifiers on a large number of images. We propose a novel Error Space Encoding (ESE) scheme for SVM evaluation which utilizes large number of classifiers already evaluated on the similar data set. We model this problem as an encoding of a novel classifier (query) in terms of the existing classifiers (query logs). With sufficiently large query logs, we show that ESE performs far better than any other existing encoding schemes. With this method we are able to retrieve nearly 100% correct top-k images from a dataset of 1 Million images spanning across 1000 categories. We also demonstrate application of our method in terms of relevance feedback and query expansion mechanism and show that our method achieves the same accuracy 90 times faster than exhaustive SVM evaluations.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Evaluation of SVM Classifiers Using Error Space Encoding\",\"authors\":\"Nisarg Raval, Rashmi Vilas Tonge, C. V. Jawahar\",\"doi\":\"10.1109/ICPR.2014.755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many computer vision tasks require efficient evaluation of Support Vector Machine (SVM) classifiers on large image databases. Our goal is to efficiently evaluate SVM classifiers on a large number of images. We propose a novel Error Space Encoding (ESE) scheme for SVM evaluation which utilizes large number of classifiers already evaluated on the similar data set. We model this problem as an encoding of a novel classifier (query) in terms of the existing classifiers (query logs). With sufficiently large query logs, we show that ESE performs far better than any other existing encoding schemes. With this method we are able to retrieve nearly 100% correct top-k images from a dataset of 1 Million images spanning across 1000 categories. We also demonstrate application of our method in terms of relevance feedback and query expansion mechanism and show that our method achieves the same accuracy 90 times faster than exhaustive SVM evaluations.\",\"PeriodicalId\":142159,\"journal\":{\"name\":\"2014 22nd International Conference on Pattern Recognition\",\"volume\":\"188 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2014.755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多计算机视觉任务需要在大型图像数据库上对支持向量机(SVM)分类器进行有效的评估。我们的目标是在大量图像上有效地评估SVM分类器。我们提出了一种新的错误空间编码(ESE)方案用于SVM评估,该方案利用了在相似数据集上已经评估过的大量分类器。我们将这个问题建模为基于现有分类器(查询日志)的新分类器(查询)的编码。使用足够大的查询日志,我们发现ESE的性能远远好于任何其他现有的编码方案。使用这种方法,我们能够从跨越1000个类别的100万张图像的数据集中检索几乎100%正确的top-k图像。我们还演示了我们的方法在相关性反馈和查询扩展机制方面的应用,并表明我们的方法比穷举支持向量机评估快90倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Evaluation of SVM Classifiers Using Error Space Encoding
Many computer vision tasks require efficient evaluation of Support Vector Machine (SVM) classifiers on large image databases. Our goal is to efficiently evaluate SVM classifiers on a large number of images. We propose a novel Error Space Encoding (ESE) scheme for SVM evaluation which utilizes large number of classifiers already evaluated on the similar data set. We model this problem as an encoding of a novel classifier (query) in terms of the existing classifiers (query logs). With sufficiently large query logs, we show that ESE performs far better than any other existing encoding schemes. With this method we are able to retrieve nearly 100% correct top-k images from a dataset of 1 Million images spanning across 1000 categories. We also demonstrate application of our method in terms of relevance feedback and query expansion mechanism and show that our method achieves the same accuracy 90 times faster than exhaustive SVM evaluations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-Time Tracking via Deformable Structure Regression Learning Traffic Camera Anomaly Detection Velocity-Based Multiple Change-Point Inference for Unsupervised Segmentation of Human Movement Behavior Volume Reconstruction for MRI Anomaly Detection through Spatio-temporal Context Modeling in Crowded Scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1