基于判别约束玻尔兹曼机的信用风险分类

Qiaochu Li, Jian Zhang, Yuhan Wang, Kary Kang
{"title":"基于判别约束玻尔兹曼机的信用风险分类","authors":"Qiaochu Li, Jian Zhang, Yuhan Wang, Kary Kang","doi":"10.1109/CSE.2014.312","DOIUrl":null,"url":null,"abstract":"Credit risk analysis plays an important role in the financial market. In this paper, discriminative restricted Boltzmann machine (RBM) is used in credit risk classification. RBM is a generative model associated with an undirected graph, which can capture complicated features from observed data, and after introducing discriminative component into RBM, it can be used to train a non-linear classifier. The method is tested in a real-world credit risk prediction task, and the empirical results demonstrate the advantage of the method over other competing ones.","PeriodicalId":258990,"journal":{"name":"2014 IEEE 17th International Conference on Computational Science and Engineering","volume":"2021 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Credit Risk Classification Using Discriminative Restricted Boltzmann Machines\",\"authors\":\"Qiaochu Li, Jian Zhang, Yuhan Wang, Kary Kang\",\"doi\":\"10.1109/CSE.2014.312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Credit risk analysis plays an important role in the financial market. In this paper, discriminative restricted Boltzmann machine (RBM) is used in credit risk classification. RBM is a generative model associated with an undirected graph, which can capture complicated features from observed data, and after introducing discriminative component into RBM, it can be used to train a non-linear classifier. The method is tested in a real-world credit risk prediction task, and the empirical results demonstrate the advantage of the method over other competing ones.\",\"PeriodicalId\":258990,\"journal\":{\"name\":\"2014 IEEE 17th International Conference on Computational Science and Engineering\",\"volume\":\"2021 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 17th International Conference on Computational Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSE.2014.312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 17th International Conference on Computational Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSE.2014.312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

信用风险分析在金融市场中起着重要的作用。本文将判别约束玻尔兹曼机(RBM)用于信用风险分类。RBM是一种与无向图相关联的生成模型,它可以从观测数据中捕获复杂的特征,在RBM中引入判别成分,可以用来训练非线性分类器。在实际的信用风险预测任务中对该方法进行了检验,实证结果表明了该方法相对于其他竞争方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Credit Risk Classification Using Discriminative Restricted Boltzmann Machines
Credit risk analysis plays an important role in the financial market. In this paper, discriminative restricted Boltzmann machine (RBM) is used in credit risk classification. RBM is a generative model associated with an undirected graph, which can capture complicated features from observed data, and after introducing discriminative component into RBM, it can be used to train a non-linear classifier. The method is tested in a real-world credit risk prediction task, and the empirical results demonstrate the advantage of the method over other competing ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Is Really NACK Protocol Secure to Be Employed in MANETs? Design of an X-Band Negative Resistance Oscillator Based on the ASIW in Modern Wireless Communication Systems Evolutionary Computation with Multi-variates Hybrid Multi-order Fuzzy Time Series for Stock Forecasting WiPCon: A Proxied Control Plane for Wireless Access Points in Software Defined Networks Design of Non-autonomous Chaotic Generalized Synchronization Based Pseudorandom Number Generator with Application in Avalanche Image Encryption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1