性能审查的3-D MAC处理器并行体积卷积算法:256×256×20 MRI过滤案例研究

S. Hasan
{"title":"性能审查的3-D MAC处理器并行体积卷积算法:256×256×20 MRI过滤案例研究","authors":"S. Hasan","doi":"10.1109/AIC-MITCSA.2016.7759920","DOIUrl":null,"url":null,"abstract":"3-D raw data collections introduce noise and artifacts that need to be recovered from degradation by an automated filtering system before further machine analysis. Serving this goal, five performance-efficient FPGA-prototyped processors are devised to realize parallel 3-D “filtering algorithm”. These parallel processors tackle the major bottlenecks and limitations of existing multiprocessor systems in input volumetric data, processing word-length, output boundary conditions and inter-processor communications. Then, greyscale 256×256×20 MRI case study are efficiently filtered and improved by a class of common convolution operators and their developed ones respectively. Analytically, the performance of the five implemented processors are evaluated in term of area, speed, dynamic power, and throughput. All five processors efficiently perform in high real-time throughput up to (114 VPS), lowest power consumption of down to (64 mW) at maximum operating frequency. The devised processors can be embedded in mobile MRI or fMRI scanner and as a pre-filtering stage in any portable automated fMRI systems.","PeriodicalId":315179,"journal":{"name":"2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-MITCSA)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Performance-vetted 3-D MAC processors for parallel volumetric convolution algorithm: A 256×256×20 MRI filtering case study\",\"authors\":\"S. Hasan\",\"doi\":\"10.1109/AIC-MITCSA.2016.7759920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3-D raw data collections introduce noise and artifacts that need to be recovered from degradation by an automated filtering system before further machine analysis. Serving this goal, five performance-efficient FPGA-prototyped processors are devised to realize parallel 3-D “filtering algorithm”. These parallel processors tackle the major bottlenecks and limitations of existing multiprocessor systems in input volumetric data, processing word-length, output boundary conditions and inter-processor communications. Then, greyscale 256×256×20 MRI case study are efficiently filtered and improved by a class of common convolution operators and their developed ones respectively. Analytically, the performance of the five implemented processors are evaluated in term of area, speed, dynamic power, and throughput. All five processors efficiently perform in high real-time throughput up to (114 VPS), lowest power consumption of down to (64 mW) at maximum operating frequency. The devised processors can be embedded in mobile MRI or fMRI scanner and as a pre-filtering stage in any portable automated fMRI systems.\",\"PeriodicalId\":315179,\"journal\":{\"name\":\"2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-MITCSA)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-MITCSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIC-MITCSA.2016.7759920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-MITCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIC-MITCSA.2016.7759920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

3-D原始数据收集会引入噪声和伪影,需要在进一步的机器分析之前通过自动过滤系统从退化中恢复。为此,设计了5个高性能fpga原型处理器,实现并行三维“滤波算法”。这些并行处理器解决了现有多处理器系统在输入体积数据、处理字长、输出边界条件和处理器间通信方面的主要瓶颈和限制。然后分别用一类常用卷积算子及其发展算子对灰度256×256×20 MRI病例研究进行有效过滤和改进。从面积、速度、动态功耗和吞吐量等方面分析了这五种处理器的性能。在最高工作频率下,所有5个处理器的实时吞吐量高达(114 VPS),功耗最低至(64 mW)。所设计的处理器可以嵌入到移动MRI或fMRI扫描仪中,并作为任何便携式自动fMRI系统的预滤波阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance-vetted 3-D MAC processors for parallel volumetric convolution algorithm: A 256×256×20 MRI filtering case study
3-D raw data collections introduce noise and artifacts that need to be recovered from degradation by an automated filtering system before further machine analysis. Serving this goal, five performance-efficient FPGA-prototyped processors are devised to realize parallel 3-D “filtering algorithm”. These parallel processors tackle the major bottlenecks and limitations of existing multiprocessor systems in input volumetric data, processing word-length, output boundary conditions and inter-processor communications. Then, greyscale 256×256×20 MRI case study are efficiently filtered and improved by a class of common convolution operators and their developed ones respectively. Analytically, the performance of the five implemented processors are evaluated in term of area, speed, dynamic power, and throughput. All five processors efficiently perform in high real-time throughput up to (114 VPS), lowest power consumption of down to (64 mW) at maximum operating frequency. The devised processors can be embedded in mobile MRI or fMRI scanner and as a pre-filtering stage in any portable automated fMRI systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Routing algorithm optimization for software defined network WAN Modeling, design and analysis of an induction heating coil for brazing process using FEM Feature extraction of brain event-related potentials using cubic spline technique Ontology based reasoning for solving passenger train optimization problem Checking the robustness of a PWM sliding mode controlled DC/DC buck-boost converter using its Matlab/Simulink model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1