{"title":"COVID-19医疗记录提取文本摘要","authors":"Deepika S, Lakshmi Krishna N, S. S","doi":"10.1109/i-PACT52855.2021.9697019","DOIUrl":null,"url":null,"abstract":"The method of reducing information from an original text document while maintaining the vital information is known as text summarizing. The amount of text data available has increased dramatically in recent years from a variety of sources. A large volume of text is an excellent source of information and knowledge of the source is essential for efficiently summarizing information that must be useful. Summarization facilitates the acquisition of vital and required information in a short period of time. Text summarization is required in a variety of domains, including news article summaries, email summaries and information summaries in the medical profession to track a patient's medical history for future treatment and so on. In summarization, there are two methods: extractive summarization and abstractive summarization. In this work, extractive summarization is used on the COVID-19 dataset. Different models and their results have been discussed.","PeriodicalId":335956,"journal":{"name":"2021 Innovations in Power and Advanced Computing Technologies (i-PACT)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extractive Text Summarization for COVID-19 Medical Records\",\"authors\":\"Deepika S, Lakshmi Krishna N, S. S\",\"doi\":\"10.1109/i-PACT52855.2021.9697019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The method of reducing information from an original text document while maintaining the vital information is known as text summarizing. The amount of text data available has increased dramatically in recent years from a variety of sources. A large volume of text is an excellent source of information and knowledge of the source is essential for efficiently summarizing information that must be useful. Summarization facilitates the acquisition of vital and required information in a short period of time. Text summarization is required in a variety of domains, including news article summaries, email summaries and information summaries in the medical profession to track a patient's medical history for future treatment and so on. In summarization, there are two methods: extractive summarization and abstractive summarization. In this work, extractive summarization is used on the COVID-19 dataset. Different models and their results have been discussed.\",\"PeriodicalId\":335956,\"journal\":{\"name\":\"2021 Innovations in Power and Advanced Computing Technologies (i-PACT)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Innovations in Power and Advanced Computing Technologies (i-PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/i-PACT52855.2021.9697019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Innovations in Power and Advanced Computing Technologies (i-PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/i-PACT52855.2021.9697019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extractive Text Summarization for COVID-19 Medical Records
The method of reducing information from an original text document while maintaining the vital information is known as text summarizing. The amount of text data available has increased dramatically in recent years from a variety of sources. A large volume of text is an excellent source of information and knowledge of the source is essential for efficiently summarizing information that must be useful. Summarization facilitates the acquisition of vital and required information in a short period of time. Text summarization is required in a variety of domains, including news article summaries, email summaries and information summaries in the medical profession to track a patient's medical history for future treatment and so on. In summarization, there are two methods: extractive summarization and abstractive summarization. In this work, extractive summarization is used on the COVID-19 dataset. Different models and their results have been discussed.