微小深度学习环境下卷积神经网络的迁移学习

E. Fragkou, Vasileios Lygnos, Dimitrios Katsaros
{"title":"微小深度学习环境下卷积神经网络的迁移学习","authors":"E. Fragkou, Vasileios Lygnos, Dimitrios Katsaros","doi":"10.1145/3575879.3575984","DOIUrl":null,"url":null,"abstract":"Tiny Machine Learning (TinyML) and Transfer Learning (TL) are two widespread methods of successfully deploying ML models to resource-starving devices. Tiny ML provides compact models, that can run on resource-constrained environments, while TL contributes to the performance of the model by using pre-existing knowledge. So, in this work we propose a simple but efficient TL method, applied to three types of Convolutional Neural Networks (CNN), by retraining more than the last fully connected layer of a CNN in the target device, and specifically one or more of the last convolutional layers. Our results shown that our proposed method (FxC1) achieves about increase in accuracy and increase in convergence speed, while it incurs a bit larger energy consumption overhead, compared to two baseline techniques, namely one that retrains the last fully connected layer, and another that retrains the whole network.","PeriodicalId":164036,"journal":{"name":"Proceedings of the 26th Pan-Hellenic Conference on Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer Learning for Convolutional Neural Networks in Tiny Deep Learning Environments\",\"authors\":\"E. Fragkou, Vasileios Lygnos, Dimitrios Katsaros\",\"doi\":\"10.1145/3575879.3575984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tiny Machine Learning (TinyML) and Transfer Learning (TL) are two widespread methods of successfully deploying ML models to resource-starving devices. Tiny ML provides compact models, that can run on resource-constrained environments, while TL contributes to the performance of the model by using pre-existing knowledge. So, in this work we propose a simple but efficient TL method, applied to three types of Convolutional Neural Networks (CNN), by retraining more than the last fully connected layer of a CNN in the target device, and specifically one or more of the last convolutional layers. Our results shown that our proposed method (FxC1) achieves about increase in accuracy and increase in convergence speed, while it incurs a bit larger energy consumption overhead, compared to two baseline techniques, namely one that retrains the last fully connected layer, and another that retrains the whole network.\",\"PeriodicalId\":164036,\"journal\":{\"name\":\"Proceedings of the 26th Pan-Hellenic Conference on Informatics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th Pan-Hellenic Conference on Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3575879.3575984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th Pan-Hellenic Conference on Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575879.3575984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微型机器学习(TinyML)和迁移学习(TL)是成功将机器学习模型部署到资源匮乏设备的两种广泛方法。Tiny ML提供紧凑的模型,可以在资源受限的环境中运行,而TL通过使用预先存在的知识来提高模型的性能。因此,在这项工作中,我们提出了一种简单但有效的TL方法,应用于三种类型的卷积神经网络(CNN),通过在目标设备中重新训练CNN的最后一个完全连接层,特别是最后一个或多个卷积层。我们的结果表明,我们提出的方法(FxC1)实现了精度的提高和收敛速度的提高,但与两种基线技术相比,它会产生更大的能耗开销,即一种是重新训练最后一个完全连接层,另一种是重新训练整个网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transfer Learning for Convolutional Neural Networks in Tiny Deep Learning Environments
Tiny Machine Learning (TinyML) and Transfer Learning (TL) are two widespread methods of successfully deploying ML models to resource-starving devices. Tiny ML provides compact models, that can run on resource-constrained environments, while TL contributes to the performance of the model by using pre-existing knowledge. So, in this work we propose a simple but efficient TL method, applied to three types of Convolutional Neural Networks (CNN), by retraining more than the last fully connected layer of a CNN in the target device, and specifically one or more of the last convolutional layers. Our results shown that our proposed method (FxC1) achieves about increase in accuracy and increase in convergence speed, while it incurs a bit larger energy consumption overhead, compared to two baseline techniques, namely one that retrains the last fully connected layer, and another that retrains the whole network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Machine Learning in Drug Discovery: Current State and Challenges CNN-based Segmentation and Classification of Sound Streams under realistic conditions Exam Wizard e-assessment platform: new features, field test results and instructor’s experience A Neuro-Symbolic Approach for Fault Diagnosis in Smart Power Grids A combination of a Proximity technique and Weighted average for LP Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1