多层物联网边缘架构的性能和效率优化

Muneeb Ejaz, T. Kumar, M. Ylianttila, E. Harjula
{"title":"多层物联网边缘架构的性能和效率优化","authors":"Muneeb Ejaz, T. Kumar, M. Ylianttila, E. Harjula","doi":"10.1109/6GSUMMIT49458.2020.9083896","DOIUrl":null,"url":null,"abstract":"The recent IoT applications set strict requirements in terms of latency, scalability, security and privacy. The current IoT systems, where computation is done at data centers, provide typically very high computational and storage capacity but long routes between computational capacity and sensors/actuators make them unsuitable for latency-critical applications and services. Mobile Edge Computing (MEC) can address these problems by bringing computational capacity within or next to the base stations of access networks. Furthermore, to cope with access network problems, the capability of providing the most critical processes at the local network layer is also important. Therefore, in this paper, we compare the traditional cloud-IoT model, a MEC-based edge-cloud-IoT model, and a local edge-cloud-IoT model with respect to their performance and efficiency, using iFogSim simulator. The results complement our previous findings that utilizing the three-tier edge-IoT architecture, capable of optimally utilizing the computational capacity of each of the three tiers, is an effective measure to reduce energy consumption, improve end-to-end latency and minimize operational costs in latency-critical IoT applications.","PeriodicalId":385212,"journal":{"name":"2020 2nd 6G Wireless Summit (6G SUMMIT)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Performance and Efficiency Optimization of Multi-layer IoT Edge Architecture\",\"authors\":\"Muneeb Ejaz, T. Kumar, M. Ylianttila, E. Harjula\",\"doi\":\"10.1109/6GSUMMIT49458.2020.9083896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent IoT applications set strict requirements in terms of latency, scalability, security and privacy. The current IoT systems, where computation is done at data centers, provide typically very high computational and storage capacity but long routes between computational capacity and sensors/actuators make them unsuitable for latency-critical applications and services. Mobile Edge Computing (MEC) can address these problems by bringing computational capacity within or next to the base stations of access networks. Furthermore, to cope with access network problems, the capability of providing the most critical processes at the local network layer is also important. Therefore, in this paper, we compare the traditional cloud-IoT model, a MEC-based edge-cloud-IoT model, and a local edge-cloud-IoT model with respect to their performance and efficiency, using iFogSim simulator. The results complement our previous findings that utilizing the three-tier edge-IoT architecture, capable of optimally utilizing the computational capacity of each of the three tiers, is an effective measure to reduce energy consumption, improve end-to-end latency and minimize operational costs in latency-critical IoT applications.\",\"PeriodicalId\":385212,\"journal\":{\"name\":\"2020 2nd 6G Wireless Summit (6G SUMMIT)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd 6G Wireless Summit (6G SUMMIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/6GSUMMIT49458.2020.9083896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd 6G Wireless Summit (6G SUMMIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/6GSUMMIT49458.2020.9083896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

最近的物联网应用在延迟、可扩展性、安全性和隐私方面都有严格的要求。目前的物联网系统在数据中心完成计算,通常提供非常高的计算和存储容量,但计算容量和传感器/执行器之间的长距离路由使其不适合延迟关键型应用和服务。移动边缘计算(MEC)可以通过在接入网络的基站内部或旁边提供计算能力来解决这些问题。此外,为了应对接入网问题,在本地网络层提供最关键进程的能力也很重要。因此,在本文中,我们使用iFogSim模拟器对传统云-物联网模型、基于mec的边缘云-物联网模型和本地边缘云-物联网模型的性能和效率进行了比较。该结果补充了我们之前的研究结果,即利用三层边缘物联网架构,能够最佳地利用三层中的每一层的计算能力,是在延迟关键型物联网应用中降低能耗、改善端到端延迟和最小化运营成本的有效措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance and Efficiency Optimization of Multi-layer IoT Edge Architecture
The recent IoT applications set strict requirements in terms of latency, scalability, security and privacy. The current IoT systems, where computation is done at data centers, provide typically very high computational and storage capacity but long routes between computational capacity and sensors/actuators make them unsuitable for latency-critical applications and services. Mobile Edge Computing (MEC) can address these problems by bringing computational capacity within or next to the base stations of access networks. Furthermore, to cope with access network problems, the capability of providing the most critical processes at the local network layer is also important. Therefore, in this paper, we compare the traditional cloud-IoT model, a MEC-based edge-cloud-IoT model, and a local edge-cloud-IoT model with respect to their performance and efficiency, using iFogSim simulator. The results complement our previous findings that utilizing the three-tier edge-IoT architecture, capable of optimally utilizing the computational capacity of each of the three tiers, is an effective measure to reduce energy consumption, improve end-to-end latency and minimize operational costs in latency-critical IoT applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards 6G: Evolution of Key Performance Indicators and Technology Trends Cellular and Wi-Fi in Unlicensed Spectrum: Competition leading to Convergence Design of a 20–80 GHz Down-Conversion Mixer for 5G Wireless Communication with 22nm CMOS A Measure of Personal Information in Mobile Data Ultra-Reliable Low-Latency Control Signaling in a Factory Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1