Dongliang Chang, Yujun Tong, Ruoyi Du, Timothy M. Hospedales, Yi-Zhe Song, Zhanyu Ma
{"title":"一个博学的细粒度视觉分类模型","authors":"Dongliang Chang, Yujun Tong, Ruoyi Du, Timothy M. Hospedales, Yi-Zhe Song, Zhanyu Ma","doi":"10.1109/CVPR52729.2023.00702","DOIUrl":null,"url":null,"abstract":"Current fine-grained visual classification (FGVC) models are isolated. In practice, we first need to identify the coarse-grained label of an object, then select the corresponding FGVC model for recognition. This hinders the application of FGVC algorithms in real-life scenarios. In this paper, we propose an erudite FGVC model jointly trained by several different datasets11In this paper, different datasets mean different fine-grained visual classification datasets., which can efficiently and accurately predict an object's fine-grained label across the combined label space. We found through a pilot study that positive and negative transfers co-occur when different datasets are mixed for training, i.e., the knowledge from other datasets is not always useful. Therefore, we first propose a feature disentanglement module and a feature re-fusion module to reduce negative transfer and boost positive transfer between different datasets. In detail, we reduce negative transfer by decoupling the deep features through many dataset-specific feature extractors. Subsequently, these are channel-wise re-fused to facilitate positive transfer. Finally, we propose a meta-learning based dataset-agnostic spatial attention layer to take full advantage of the multi-dataset training data, given that localisation is dataset-agnostic between different datasets. Experimental results across 11 different mixed-datasets built on four different FGVC datasets demonstrate the effectiveness of the proposed method. Furthermore, the proposed method can be easily combined with existing FGVC methods to obtain state-of-the-art results. Our code is available at https://github.com/PRIS-CV/An-Erudite-FGVC-Model.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Erudite Fine-Grained Visual Classification Model\",\"authors\":\"Dongliang Chang, Yujun Tong, Ruoyi Du, Timothy M. Hospedales, Yi-Zhe Song, Zhanyu Ma\",\"doi\":\"10.1109/CVPR52729.2023.00702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current fine-grained visual classification (FGVC) models are isolated. In practice, we first need to identify the coarse-grained label of an object, then select the corresponding FGVC model for recognition. This hinders the application of FGVC algorithms in real-life scenarios. In this paper, we propose an erudite FGVC model jointly trained by several different datasets11In this paper, different datasets mean different fine-grained visual classification datasets., which can efficiently and accurately predict an object's fine-grained label across the combined label space. We found through a pilot study that positive and negative transfers co-occur when different datasets are mixed for training, i.e., the knowledge from other datasets is not always useful. Therefore, we first propose a feature disentanglement module and a feature re-fusion module to reduce negative transfer and boost positive transfer between different datasets. In detail, we reduce negative transfer by decoupling the deep features through many dataset-specific feature extractors. Subsequently, these are channel-wise re-fused to facilitate positive transfer. Finally, we propose a meta-learning based dataset-agnostic spatial attention layer to take full advantage of the multi-dataset training data, given that localisation is dataset-agnostic between different datasets. Experimental results across 11 different mixed-datasets built on four different FGVC datasets demonstrate the effectiveness of the proposed method. Furthermore, the proposed method can be easily combined with existing FGVC methods to obtain state-of-the-art results. Our code is available at https://github.com/PRIS-CV/An-Erudite-FGVC-Model.\",\"PeriodicalId\":376416,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52729.2023.00702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.00702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Erudite Fine-Grained Visual Classification Model
Current fine-grained visual classification (FGVC) models are isolated. In practice, we first need to identify the coarse-grained label of an object, then select the corresponding FGVC model for recognition. This hinders the application of FGVC algorithms in real-life scenarios. In this paper, we propose an erudite FGVC model jointly trained by several different datasets11In this paper, different datasets mean different fine-grained visual classification datasets., which can efficiently and accurately predict an object's fine-grained label across the combined label space. We found through a pilot study that positive and negative transfers co-occur when different datasets are mixed for training, i.e., the knowledge from other datasets is not always useful. Therefore, we first propose a feature disentanglement module and a feature re-fusion module to reduce negative transfer and boost positive transfer between different datasets. In detail, we reduce negative transfer by decoupling the deep features through many dataset-specific feature extractors. Subsequently, these are channel-wise re-fused to facilitate positive transfer. Finally, we propose a meta-learning based dataset-agnostic spatial attention layer to take full advantage of the multi-dataset training data, given that localisation is dataset-agnostic between different datasets. Experimental results across 11 different mixed-datasets built on four different FGVC datasets demonstrate the effectiveness of the proposed method. Furthermore, the proposed method can be easily combined with existing FGVC methods to obtain state-of-the-art results. Our code is available at https://github.com/PRIS-CV/An-Erudite-FGVC-Model.