一个博学的细粒度视觉分类模型

Dongliang Chang, Yujun Tong, Ruoyi Du, Timothy M. Hospedales, Yi-Zhe Song, Zhanyu Ma
{"title":"一个博学的细粒度视觉分类模型","authors":"Dongliang Chang, Yujun Tong, Ruoyi Du, Timothy M. Hospedales, Yi-Zhe Song, Zhanyu Ma","doi":"10.1109/CVPR52729.2023.00702","DOIUrl":null,"url":null,"abstract":"Current fine-grained visual classification (FGVC) models are isolated. In practice, we first need to identify the coarse-grained label of an object, then select the corresponding FGVC model for recognition. This hinders the application of FGVC algorithms in real-life scenarios. In this paper, we propose an erudite FGVC model jointly trained by several different datasets11In this paper, different datasets mean different fine-grained visual classification datasets., which can efficiently and accurately predict an object's fine-grained label across the combined label space. We found through a pilot study that positive and negative transfers co-occur when different datasets are mixed for training, i.e., the knowledge from other datasets is not always useful. Therefore, we first propose a feature disentanglement module and a feature re-fusion module to reduce negative transfer and boost positive transfer between different datasets. In detail, we reduce negative transfer by decoupling the deep features through many dataset-specific feature extractors. Subsequently, these are channel-wise re-fused to facilitate positive transfer. Finally, we propose a meta-learning based dataset-agnostic spatial attention layer to take full advantage of the multi-dataset training data, given that localisation is dataset-agnostic between different datasets. Experimental results across 11 different mixed-datasets built on four different FGVC datasets demonstrate the effectiveness of the proposed method. Furthermore, the proposed method can be easily combined with existing FGVC methods to obtain state-of-the-art results. Our code is available at https://github.com/PRIS-CV/An-Erudite-FGVC-Model.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Erudite Fine-Grained Visual Classification Model\",\"authors\":\"Dongliang Chang, Yujun Tong, Ruoyi Du, Timothy M. Hospedales, Yi-Zhe Song, Zhanyu Ma\",\"doi\":\"10.1109/CVPR52729.2023.00702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current fine-grained visual classification (FGVC) models are isolated. In practice, we first need to identify the coarse-grained label of an object, then select the corresponding FGVC model for recognition. This hinders the application of FGVC algorithms in real-life scenarios. In this paper, we propose an erudite FGVC model jointly trained by several different datasets11In this paper, different datasets mean different fine-grained visual classification datasets., which can efficiently and accurately predict an object's fine-grained label across the combined label space. We found through a pilot study that positive and negative transfers co-occur when different datasets are mixed for training, i.e., the knowledge from other datasets is not always useful. Therefore, we first propose a feature disentanglement module and a feature re-fusion module to reduce negative transfer and boost positive transfer between different datasets. In detail, we reduce negative transfer by decoupling the deep features through many dataset-specific feature extractors. Subsequently, these are channel-wise re-fused to facilitate positive transfer. Finally, we propose a meta-learning based dataset-agnostic spatial attention layer to take full advantage of the multi-dataset training data, given that localisation is dataset-agnostic between different datasets. Experimental results across 11 different mixed-datasets built on four different FGVC datasets demonstrate the effectiveness of the proposed method. Furthermore, the proposed method can be easily combined with existing FGVC methods to obtain state-of-the-art results. Our code is available at https://github.com/PRIS-CV/An-Erudite-FGVC-Model.\",\"PeriodicalId\":376416,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52729.2023.00702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.00702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前的细粒度视觉分类(FGVC)模型是孤立的。在实践中,我们首先需要识别对象的粗粒度标签,然后选择相应的FGVC模型进行识别。这阻碍了FGVC算法在现实生活中的应用。在本文中,我们提出了一个由多个不同数据集联合训练的博学的FGVC模型。在本文中,不同的数据集意味着不同的细粒度视觉分类数据集。,它可以在组合的标签空间中高效、准确地预测对象的细粒度标签。我们通过一项试点研究发现,当不同的数据集混合进行训练时,正迁移和负迁移同时发生,即来自其他数据集的知识并不总是有用的。因此,我们首先提出了特征解纠缠模块和特征再融合模块,以减少不同数据集之间的负迁移和促进正迁移。详细地说,我们通过许多特定于数据集的特征提取器来解耦深度特征,从而减少负迁移。随后,这些都是通道明智的拒绝,以促进正转移。最后,我们提出了一个基于元学习的与数据集无关的空间注意层,以充分利用多数据集训练数据,因为不同数据集之间的定位是与数据集无关的。在4个不同的FGVC数据集上建立的11个不同混合数据集的实验结果证明了该方法的有效性。此外,所提出的方法可以很容易地与现有的FGVC方法相结合,以获得最先进的结果。我们的代码可在https://github.com/PRIS-CV/An-Erudite-FGVC-Model上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Erudite Fine-Grained Visual Classification Model
Current fine-grained visual classification (FGVC) models are isolated. In practice, we first need to identify the coarse-grained label of an object, then select the corresponding FGVC model for recognition. This hinders the application of FGVC algorithms in real-life scenarios. In this paper, we propose an erudite FGVC model jointly trained by several different datasets11In this paper, different datasets mean different fine-grained visual classification datasets., which can efficiently and accurately predict an object's fine-grained label across the combined label space. We found through a pilot study that positive and negative transfers co-occur when different datasets are mixed for training, i.e., the knowledge from other datasets is not always useful. Therefore, we first propose a feature disentanglement module and a feature re-fusion module to reduce negative transfer and boost positive transfer between different datasets. In detail, we reduce negative transfer by decoupling the deep features through many dataset-specific feature extractors. Subsequently, these are channel-wise re-fused to facilitate positive transfer. Finally, we propose a meta-learning based dataset-agnostic spatial attention layer to take full advantage of the multi-dataset training data, given that localisation is dataset-agnostic between different datasets. Experimental results across 11 different mixed-datasets built on four different FGVC datasets demonstrate the effectiveness of the proposed method. Furthermore, the proposed method can be easily combined with existing FGVC methods to obtain state-of-the-art results. Our code is available at https://github.com/PRIS-CV/An-Erudite-FGVC-Model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
L-CoIns: Language-based Colorization With Instance Awareness Neural Texture Synthesis with Guided Correspondence LOGO: A Long-Form Video Dataset for Group Action Quality Assessment ERM-KTP: Knowledge-Level Machine Unlearning via Knowledge Transfer Target-referenced Reactive Grasping for Dynamic Objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1