{"title":"基于Logistic回归算法和支持向量机算法的钓鱼网站准确率预测方法","authors":"Vallepu Rambabu, K. Malathi, R. Mahaveerakannan","doi":"10.1109/ICECA55336.2022.10009351","DOIUrl":null,"url":null,"abstract":"To compare novel LR with the SVM technique to estimate the precision of phishing websites. Materials and Methods: The SVM method's algorithm for supervised learning (N = 20) is compared to the Logistic Regression algorithm's supervised learning algorithm (N = 20). To achieve great precision, the G power value is set to 0.8. Machine Learning is used in the framework. Compared to the SVM approach, LR has more precision (92.00%). (90.26%). With a confidence value of 95%, the impartial T-Test was run (p =.375), indicating the importance score that is statistically insignificant (p>0.05). Conclusion: The LR approach appeared to detect phishing websites with greater accuracy than the SVM technique.","PeriodicalId":356949,"journal":{"name":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Innovative Method to Predict the Accuracy of Phishing Websites by Comparing Logistic Regression Algorithm with Support Vector Machine Algorithm\",\"authors\":\"Vallepu Rambabu, K. Malathi, R. Mahaveerakannan\",\"doi\":\"10.1109/ICECA55336.2022.10009351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To compare novel LR with the SVM technique to estimate the precision of phishing websites. Materials and Methods: The SVM method's algorithm for supervised learning (N = 20) is compared to the Logistic Regression algorithm's supervised learning algorithm (N = 20). To achieve great precision, the G power value is set to 0.8. Machine Learning is used in the framework. Compared to the SVM approach, LR has more precision (92.00%). (90.26%). With a confidence value of 95%, the impartial T-Test was run (p =.375), indicating the importance score that is statistically insignificant (p>0.05). Conclusion: The LR approach appeared to detect phishing websites with greater accuracy than the SVM technique.\",\"PeriodicalId\":356949,\"journal\":{\"name\":\"2022 6th International Conference on Electronics, Communication and Aerospace Technology\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Electronics, Communication and Aerospace Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECA55336.2022.10009351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA55336.2022.10009351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Innovative Method to Predict the Accuracy of Phishing Websites by Comparing Logistic Regression Algorithm with Support Vector Machine Algorithm
To compare novel LR with the SVM technique to estimate the precision of phishing websites. Materials and Methods: The SVM method's algorithm for supervised learning (N = 20) is compared to the Logistic Regression algorithm's supervised learning algorithm (N = 20). To achieve great precision, the G power value is set to 0.8. Machine Learning is used in the framework. Compared to the SVM approach, LR has more precision (92.00%). (90.26%). With a confidence value of 95%, the impartial T-Test was run (p =.375), indicating the importance score that is statistically insignificant (p>0.05). Conclusion: The LR approach appeared to detect phishing websites with greater accuracy than the SVM technique.