{"title":"基于交叉累积残差熵梯度优化的多传感器遥感影像配准","authors":"M. Pickering, Yi Xiao, X. Jia","doi":"10.1117/12.777016","DOIUrl":null,"url":null,"abstract":"For multi-sensor registration, previous techniques typically use mutual information (MI) rather than the sum-of-the-squared difference (SSD) as the similarity measure. However, the optimization of MI is much less straightforward than is the case for SSD-based algorithms. A new technique for image registration has recently been proposed that uses an information theoretic measure called the Cross-Cumulative Residual Entropy (CCRE). In this paper we show that using CCRE for multi-sensor registration of remote sensing imagery provides an optimization strategy that converges to a global maximum with significantly less iterations than existing techniques and is much less sensitive to the initial geometric disparity between the two images to be registered.","PeriodicalId":133868,"journal":{"name":"SPIE Defense + Commercial Sensing","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Registration of multi-sensor remote sensing imagery by gradient-based optimization of cross-cumulative residual entropy\",\"authors\":\"M. Pickering, Yi Xiao, X. Jia\",\"doi\":\"10.1117/12.777016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For multi-sensor registration, previous techniques typically use mutual information (MI) rather than the sum-of-the-squared difference (SSD) as the similarity measure. However, the optimization of MI is much less straightforward than is the case for SSD-based algorithms. A new technique for image registration has recently been proposed that uses an information theoretic measure called the Cross-Cumulative Residual Entropy (CCRE). In this paper we show that using CCRE for multi-sensor registration of remote sensing imagery provides an optimization strategy that converges to a global maximum with significantly less iterations than existing techniques and is much less sensitive to the initial geometric disparity between the two images to be registered.\",\"PeriodicalId\":133868,\"journal\":{\"name\":\"SPIE Defense + Commercial Sensing\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Defense + Commercial Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.777016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.777016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Registration of multi-sensor remote sensing imagery by gradient-based optimization of cross-cumulative residual entropy
For multi-sensor registration, previous techniques typically use mutual information (MI) rather than the sum-of-the-squared difference (SSD) as the similarity measure. However, the optimization of MI is much less straightforward than is the case for SSD-based algorithms. A new technique for image registration has recently been proposed that uses an information theoretic measure called the Cross-Cumulative Residual Entropy (CCRE). In this paper we show that using CCRE for multi-sensor registration of remote sensing imagery provides an optimization strategy that converges to a global maximum with significantly less iterations than existing techniques and is much less sensitive to the initial geometric disparity between the two images to be registered.