程序修复在任意故障深度

Besma Khaireddine, Matias Martinez, A. Mili
{"title":"程序修复在任意故障深度","authors":"Besma Khaireddine, Matias Martinez, A. Mili","doi":"10.1109/ICST.2019.00056","DOIUrl":null,"url":null,"abstract":"Program repair has been an active research area for over a decade and has achieved great strides in terms of scalable automated repair tools. In this paper we argue that existing program repair tools lack an important ingredient, which limits their scope and their efficiency: a formal definition of a fault, and a formal characterization of fault removal. To support our conjecture, we consider GenProg, an archetypical program repair tool, and modify it according to our definitions of fault and fault removal; then we show, by means of empirical experiments, the impact that this has on the effectiveness and efficiency of thee tool.","PeriodicalId":446827,"journal":{"name":"2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Program Repair at Arbitrary Fault Depth\",\"authors\":\"Besma Khaireddine, Matias Martinez, A. Mili\",\"doi\":\"10.1109/ICST.2019.00056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Program repair has been an active research area for over a decade and has achieved great strides in terms of scalable automated repair tools. In this paper we argue that existing program repair tools lack an important ingredient, which limits their scope and their efficiency: a formal definition of a fault, and a formal characterization of fault removal. To support our conjecture, we consider GenProg, an archetypical program repair tool, and modify it according to our definitions of fault and fault removal; then we show, by means of empirical experiments, the impact that this has on the effectiveness and efficiency of thee tool.\",\"PeriodicalId\":446827,\"journal\":{\"name\":\"2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICST.2019.00056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICST.2019.00056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

十多年来,程序修复一直是一个活跃的研究领域,并且在可扩展的自动修复工具方面取得了很大的进步。在本文中,我们认为现有的程序修复工具缺乏一个重要的成分,这限制了它们的范围和效率:故障的正式定义,以及故障去除的正式表征。为了支持我们的猜想,我们考虑了典型的程序修复工具GenProg,并根据我们对故障和故障排除的定义对其进行了修改;然后,通过实证实验,我们展示了这对三种工具的有效性和效率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Program Repair at Arbitrary Fault Depth
Program repair has been an active research area for over a decade and has achieved great strides in terms of scalable automated repair tools. In this paper we argue that existing program repair tools lack an important ingredient, which limits their scope and their efficiency: a formal definition of a fault, and a formal characterization of fault removal. To support our conjecture, we consider GenProg, an archetypical program repair tool, and modify it according to our definitions of fault and fault removal; then we show, by means of empirical experiments, the impact that this has on the effectiveness and efficiency of thee tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parallel Many-Objective Search for Unit Tests SeqFuzzer: An Industrial Protocol Fuzzing Framework from a Deep Learning Perspective Classifying False Positive Static Checker Alarms in Continuous Integration Using Convolutional Neural Networks Automated Function Assessment in Driving Scenarios Techniques for Evolution-Aware Runtime Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1