{"title":"基于D-ADMM的具有输入输出模型的分布式MPC","authors":"Rafael P. Costa, J. M. Lemos, J. Mota, J. Xavier","doi":"10.1109/CCA.2014.6981422","DOIUrl":null,"url":null,"abstract":"This article presents a distributed model predictive controller (MPC) based on linear models that use input/output plant data and D-ADMM optimization. The use of input/output models has the advantage of not requiring a Kalman filter to estimate the plant state. The D-ADMM algorithm solves the optimization problem associated to a cost function that is the sum of the control agents private costs, being a modification of the Alternating Direction of Multipliers (ADMM) algorithm that requires no central node and implies a significant reduction in the communication among adjacent nodes. The distributed MPC is obtained for the special case of a linear graph. An application to distributed control of a water delivery canal is presented to illustrate the algorithm.","PeriodicalId":205599,"journal":{"name":"2014 IEEE Conference on Control Applications (CCA)","volume":"236 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"D-ADMM based distributed MPC with input-output models\",\"authors\":\"Rafael P. Costa, J. M. Lemos, J. Mota, J. Xavier\",\"doi\":\"10.1109/CCA.2014.6981422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a distributed model predictive controller (MPC) based on linear models that use input/output plant data and D-ADMM optimization. The use of input/output models has the advantage of not requiring a Kalman filter to estimate the plant state. The D-ADMM algorithm solves the optimization problem associated to a cost function that is the sum of the control agents private costs, being a modification of the Alternating Direction of Multipliers (ADMM) algorithm that requires no central node and implies a significant reduction in the communication among adjacent nodes. The distributed MPC is obtained for the special case of a linear graph. An application to distributed control of a water delivery canal is presented to illustrate the algorithm.\",\"PeriodicalId\":205599,\"journal\":{\"name\":\"2014 IEEE Conference on Control Applications (CCA)\",\"volume\":\"236 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Control Applications (CCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2014.6981422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2014.6981422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
D-ADMM based distributed MPC with input-output models
This article presents a distributed model predictive controller (MPC) based on linear models that use input/output plant data and D-ADMM optimization. The use of input/output models has the advantage of not requiring a Kalman filter to estimate the plant state. The D-ADMM algorithm solves the optimization problem associated to a cost function that is the sum of the control agents private costs, being a modification of the Alternating Direction of Multipliers (ADMM) algorithm that requires no central node and implies a significant reduction in the communication among adjacent nodes. The distributed MPC is obtained for the special case of a linear graph. An application to distributed control of a water delivery canal is presented to illustrate the algorithm.