{"title":"RISF:超像素分割的递归迭代生成森林","authors":"F. L. Galvão, A. Falcão, A. Chowdhury","doi":"10.1109/SIBGRAPI.2018.00059","DOIUrl":null,"url":null,"abstract":"Methods for superpixel segmentation have become very popular in computer vision. Recently, a graph-based framework named ISF (Iterative Spanning Forest) was proposed to obtain connected superpixels (supervoxels in 3D) based on multiple executions of the Image Foresting Transform (IFT) algorithm from a given choice of four components: a seed sampling strategy, an adjacency relation, a connectivity function, and a seed recomputation procedure. In this paper, we extend ISF to introduce a unique characteristic among superpixel segmentation methods. Using the new framework, termed as Recursive Iterative Spanning Forest (RISF), one can recursively generate multiple segmentation scales on region adjacency graphs (i.e., a hierarchy of superpixels) without sacrificing the efficiency and effectiveness of ISF. In addition to a hierarchical segmentation, RISF allows a more effective geodesic seed sampling strategy, with no negative impact in the efficiency of the method. For a fixed number of scales using 2D and 3D image datasets, we show that RISF can consistently outperform the most competitive ISF-based methods.","PeriodicalId":208985,"journal":{"name":"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"RISF: Recursive Iterative Spanning Forest for Superpixel Segmentation\",\"authors\":\"F. L. Galvão, A. Falcão, A. Chowdhury\",\"doi\":\"10.1109/SIBGRAPI.2018.00059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methods for superpixel segmentation have become very popular in computer vision. Recently, a graph-based framework named ISF (Iterative Spanning Forest) was proposed to obtain connected superpixels (supervoxels in 3D) based on multiple executions of the Image Foresting Transform (IFT) algorithm from a given choice of four components: a seed sampling strategy, an adjacency relation, a connectivity function, and a seed recomputation procedure. In this paper, we extend ISF to introduce a unique characteristic among superpixel segmentation methods. Using the new framework, termed as Recursive Iterative Spanning Forest (RISF), one can recursively generate multiple segmentation scales on region adjacency graphs (i.e., a hierarchy of superpixels) without sacrificing the efficiency and effectiveness of ISF. In addition to a hierarchical segmentation, RISF allows a more effective geodesic seed sampling strategy, with no negative impact in the efficiency of the method. For a fixed number of scales using 2D and 3D image datasets, we show that RISF can consistently outperform the most competitive ISF-based methods.\",\"PeriodicalId\":208985,\"journal\":{\"name\":\"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBGRAPI.2018.00059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2018.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RISF: Recursive Iterative Spanning Forest for Superpixel Segmentation
Methods for superpixel segmentation have become very popular in computer vision. Recently, a graph-based framework named ISF (Iterative Spanning Forest) was proposed to obtain connected superpixels (supervoxels in 3D) based on multiple executions of the Image Foresting Transform (IFT) algorithm from a given choice of four components: a seed sampling strategy, an adjacency relation, a connectivity function, and a seed recomputation procedure. In this paper, we extend ISF to introduce a unique characteristic among superpixel segmentation methods. Using the new framework, termed as Recursive Iterative Spanning Forest (RISF), one can recursively generate multiple segmentation scales on region adjacency graphs (i.e., a hierarchy of superpixels) without sacrificing the efficiency and effectiveness of ISF. In addition to a hierarchical segmentation, RISF allows a more effective geodesic seed sampling strategy, with no negative impact in the efficiency of the method. For a fixed number of scales using 2D and 3D image datasets, we show that RISF can consistently outperform the most competitive ISF-based methods.