结合多种模型进行基于歌词的音乐体裁分类

Caio Luiggy Riyoichi Sawada Ueno, Diego Furtado Silva
{"title":"结合多种模型进行基于歌词的音乐体裁分类","authors":"Caio Luiggy Riyoichi Sawada Ueno, Diego Furtado Silva","doi":"10.1109/BRACIS.2019.00033","DOIUrl":null,"url":null,"abstract":"Automatic music organization and retrieval is a highly required task nowadays. Labeling songs with summarized but descriptive information have implications in a wide range of tasks in this scenario. The genre is one of the most common labels used for music recordings. Using this piece of information, music platforms can organize collections by, for instance, associating songs and artists with similar characteristics. Lyrics represent an alternative source of data for genre recognition. While \"traditional\" bag-of-words-based text mining techniques represent a considerable part of the literature, recent papers shown an advance on this task applying deep learning algorithms. However, there is no research on how these distinct strategies contribute to each other. In this paper, we explore different strategies for music genre classification from lyrics and show that even simple combinations of these strategies allow improving accuracy on the lyrics-based music genre identification.","PeriodicalId":335206,"journal":{"name":"Brazilian Conference on Intelligent Systems","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On Combining Diverse Models for Lyrics-Based Music Genre Classification\",\"authors\":\"Caio Luiggy Riyoichi Sawada Ueno, Diego Furtado Silva\",\"doi\":\"10.1109/BRACIS.2019.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic music organization and retrieval is a highly required task nowadays. Labeling songs with summarized but descriptive information have implications in a wide range of tasks in this scenario. The genre is one of the most common labels used for music recordings. Using this piece of information, music platforms can organize collections by, for instance, associating songs and artists with similar characteristics. Lyrics represent an alternative source of data for genre recognition. While \\\"traditional\\\" bag-of-words-based text mining techniques represent a considerable part of the literature, recent papers shown an advance on this task applying deep learning algorithms. However, there is no research on how these distinct strategies contribute to each other. In this paper, we explore different strategies for music genre classification from lyrics and show that even simple combinations of these strategies allow improving accuracy on the lyrics-based music genre identification.\",\"PeriodicalId\":335206,\"journal\":{\"name\":\"Brazilian Conference on Intelligent Systems\",\"volume\":\"2014 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Conference on Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2019.00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Conference on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2019.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

音乐的自动组织和检索是当今社会迫切需要的一项任务。在这种情况下,用总结但描述性的信息标记歌曲对很多任务都有影响。这种类型是最常用的音乐唱片标签之一。利用这些信息,音乐平台可以通过将具有相似特征的歌曲和艺术家联系起来来组织收藏。歌词是类型识别的另一种数据来源。虽然“传统的”基于词袋的文本挖掘技术代表了相当大的一部分文献,但最近的论文显示了应用深度学习算法在这项任务上的进展。然而,没有研究表明这些不同的策略是如何相互促进的。在本文中,我们探索了从歌词中进行音乐类型分类的不同策略,并表明即使这些策略的简单组合也可以提高基于歌词的音乐类型识别的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Combining Diverse Models for Lyrics-Based Music Genre Classification
Automatic music organization and retrieval is a highly required task nowadays. Labeling songs with summarized but descriptive information have implications in a wide range of tasks in this scenario. The genre is one of the most common labels used for music recordings. Using this piece of information, music platforms can organize collections by, for instance, associating songs and artists with similar characteristics. Lyrics represent an alternative source of data for genre recognition. While "traditional" bag-of-words-based text mining techniques represent a considerable part of the literature, recent papers shown an advance on this task applying deep learning algorithms. However, there is no research on how these distinct strategies contribute to each other. In this paper, we explore different strategies for music genre classification from lyrics and show that even simple combinations of these strategies allow improving accuracy on the lyrics-based music genre identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Incremental MaxSAT-Based Model to Learn Interpretable and Balanced Classification Rules Logic-Based Explanations for Linear Support Vector Classifiers with Reject Option Event Detection in Therapy Sessions for Children with Autism Augmenting a Physics-Informed Neural Network for the 2D Burgers Equation by Addition of Solution Data Points Single Image Super-Resolution Based on Capsule Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1