使用片上温度传感器的芯片级热剖面估计

Yufu Zhang, Ankur Srivastava, M. Zahran
{"title":"使用片上温度传感器的芯片级热剖面估计","authors":"Yufu Zhang, Ankur Srivastava, M. Zahran","doi":"10.1109/ICCD.2008.4751897","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of chip level thermal profile estimation using runtime temperature sensor readings. We address the challenges of a) availability of only a few thermal sensors with constrained locations (sensors cannot be placed just anywhere) b) random on-chip power density characteristics due to unpredictable workloads and fabrication variability. Firstly we model the random power density as a probability density function. Given this random characteristic and runtime thermal sensor readings, we exploit the correlation between power dissipation of different chip modules to estimate the expected value of temperature at each chip location. Our methods are optimal if the underlying power density has Gaussian nature. We also present a heuristic to generate the chip level thermal profile estimates when the underlying randomness is non-Gaussian. Experimental results indicate that our method generates highly accurate thermal profile estimates of the entire chip at runtime using only a few thermal sensors.","PeriodicalId":345501,"journal":{"name":"2008 IEEE International Conference on Computer Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Chip level thermal profile estimation using on-chip temperature sensors\",\"authors\":\"Yufu Zhang, Ankur Srivastava, M. Zahran\",\"doi\":\"10.1109/ICCD.2008.4751897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of chip level thermal profile estimation using runtime temperature sensor readings. We address the challenges of a) availability of only a few thermal sensors with constrained locations (sensors cannot be placed just anywhere) b) random on-chip power density characteristics due to unpredictable workloads and fabrication variability. Firstly we model the random power density as a probability density function. Given this random characteristic and runtime thermal sensor readings, we exploit the correlation between power dissipation of different chip modules to estimate the expected value of temperature at each chip location. Our methods are optimal if the underlying power density has Gaussian nature. We also present a heuristic to generate the chip level thermal profile estimates when the underlying randomness is non-Gaussian. Experimental results indicate that our method generates highly accurate thermal profile estimates of the entire chip at runtime using only a few thermal sensors.\",\"PeriodicalId\":345501,\"journal\":{\"name\":\"2008 IEEE International Conference on Computer Design\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2008.4751897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2008.4751897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

本文解决了使用运行时温度传感器读数进行芯片级热剖面估计的问题。我们解决了以下挑战:a)只有少数位置受限的热传感器可用性(传感器不能放置在任何地方);b)由于不可预测的工作负载和制造可变性,芯片上的随机功率密度特性。首先,我们将随机功率密度建模为概率密度函数。考虑到这种随机特性和运行时热传感器读数,我们利用不同芯片模块功耗之间的相关性来估计每个芯片位置的温度期望值。如果底层功率密度具有高斯性质,我们的方法是最优的。我们还提出了一种启发式方法来生成芯片级热剖面估计,当潜在的随机性是非高斯的。实验结果表明,我们的方法仅使用少数热传感器就能在运行时对整个芯片产生高精度的热分布估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chip level thermal profile estimation using on-chip temperature sensors
This paper addresses the problem of chip level thermal profile estimation using runtime temperature sensor readings. We address the challenges of a) availability of only a few thermal sensors with constrained locations (sensors cannot be placed just anywhere) b) random on-chip power density characteristics due to unpredictable workloads and fabrication variability. Firstly we model the random power density as a probability density function. Given this random characteristic and runtime thermal sensor readings, we exploit the correlation between power dissipation of different chip modules to estimate the expected value of temperature at each chip location. Our methods are optimal if the underlying power density has Gaussian nature. We also present a heuristic to generate the chip level thermal profile estimates when the underlying randomness is non-Gaussian. Experimental results indicate that our method generates highly accurate thermal profile estimates of the entire chip at runtime using only a few thermal sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fine-grain dynamic sleep control scheme in MIPS R3000 Efficiency of thread-level speculation in SMT and CMP architectures - performance, power and thermal perspective Synthesis of parallel prefix adders considering switching activities A floating-point fused dot-product unit Mathematical analysis of buffer sizing for Network-on-Chips under multimedia traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1