一种无约束混合活动轮廓图像分割模型

Liyan Ma, Jian Yu
{"title":"一种无约束混合活动轮廓图像分割模型","authors":"Liyan Ma, Jian Yu","doi":"10.1109/ICOSP.2010.5655881","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an unconstrained active contour model combining edge and region information for image segmentation. The new method achieves the segmentation by filternating the regularization term and the data-fidelity term. We use a morphological approach to the regularization term which is the most time-consuming in the energy function. The proposed method is robust to noise and avoids re-initialization. The efficiency of our method is validated by testing it on various images.","PeriodicalId":281876,"journal":{"name":"IEEE 10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An unconstrained hybrid active contour model for image segmentation\",\"authors\":\"Liyan Ma, Jian Yu\",\"doi\":\"10.1109/ICOSP.2010.5655881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an unconstrained active contour model combining edge and region information for image segmentation. The new method achieves the segmentation by filternating the regularization term and the data-fidelity term. We use a morphological approach to the regularization term which is the most time-consuming in the energy function. The proposed method is robust to noise and avoids re-initialization. The efficiency of our method is validated by testing it on various images.\",\"PeriodicalId\":281876,\"journal\":{\"name\":\"IEEE 10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE 10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.2010.5655881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2010.5655881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种结合边缘和区域信息的无约束活动轮廓模型,用于图像分割。该方法通过过滤正则化项和数据保真度项来实现分割。我们使用形态学方法来处理能量函数中最耗时的正则化项。该方法对噪声具有鲁棒性,避免了重新初始化。通过对不同图像的测试,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An unconstrained hybrid active contour model for image segmentation
In this paper, we propose an unconstrained active contour model combining edge and region information for image segmentation. The new method achieves the segmentation by filternating the regularization term and the data-fidelity term. We use a morphological approach to the regularization term which is the most time-consuming in the energy function. The proposed method is robust to noise and avoids re-initialization. The efficiency of our method is validated by testing it on various images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinearity analysis of RF power amplified TD-SCDMA signals An optimized estimation of AR model parameters with inhibiting spectrum deviation Non-parametic model for robust road recognition Singularity detection of TWR echoes based on correlation A novel approach of countering centroid jamming by using INS information in terminal guidance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1