可见光通信中的物理层安全

Anil Yesilkaya, T. Çogalan, S. Erkucuk, Yalçin Sadi, E. Panayirci, H. Haas, H. Poor
{"title":"可见光通信中的物理层安全","authors":"Anil Yesilkaya, T. Çogalan, S. Erkucuk, Yalçin Sadi, E. Panayirci, H. Haas, H. Poor","doi":"10.1109/6GSUMMIT49458.2020.9083799","DOIUrl":null,"url":null,"abstract":"Optical wireless communications (OWC) and its potential to solve physical layer security (PLS) issues are becoming important research areas in 6G communications systems. In this paper, an overview of PLS in visible light communications (VLC), is presented. Then, two new PLS techniques based on generalized space shift keying (GSSK) modulation with spatial constellation design (SCD) and non-orthogonal multiple access (NOMA) cooperative relaying are introduced. In the first technique, the PLS of the system is enhanced by the appropriate selection of a precoding matrix for randomly activated light emitting diodes (LEDs). With the aid of a legitimate user's (Bob's) channel state information (CSI) at the transmitter (CSIT), the bit error ratio (BER) of Bob is minimized while the BER performance of the potential eavesdroppers (Eves) is significantly degraded. In the second technique, superposition coding with uniform signaling is used at the transmitter and relays. The design of secure beamforming vectors at the relay nodes along with NOMA techniques is used to enhance PLS in a VLC system. Insights gained from the improved security levels of the proposed techniques are used to discuss how PLS can be further improved in future generation communication systems by using VLC.","PeriodicalId":385212,"journal":{"name":"2020 2nd 6G Wireless Summit (6G SUMMIT)","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Physical-Layer Security in Visible Light Communications\",\"authors\":\"Anil Yesilkaya, T. Çogalan, S. Erkucuk, Yalçin Sadi, E. Panayirci, H. Haas, H. Poor\",\"doi\":\"10.1109/6GSUMMIT49458.2020.9083799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical wireless communications (OWC) and its potential to solve physical layer security (PLS) issues are becoming important research areas in 6G communications systems. In this paper, an overview of PLS in visible light communications (VLC), is presented. Then, two new PLS techniques based on generalized space shift keying (GSSK) modulation with spatial constellation design (SCD) and non-orthogonal multiple access (NOMA) cooperative relaying are introduced. In the first technique, the PLS of the system is enhanced by the appropriate selection of a precoding matrix for randomly activated light emitting diodes (LEDs). With the aid of a legitimate user's (Bob's) channel state information (CSI) at the transmitter (CSIT), the bit error ratio (BER) of Bob is minimized while the BER performance of the potential eavesdroppers (Eves) is significantly degraded. In the second technique, superposition coding with uniform signaling is used at the transmitter and relays. The design of secure beamforming vectors at the relay nodes along with NOMA techniques is used to enhance PLS in a VLC system. Insights gained from the improved security levels of the proposed techniques are used to discuss how PLS can be further improved in future generation communication systems by using VLC.\",\"PeriodicalId\":385212,\"journal\":{\"name\":\"2020 2nd 6G Wireless Summit (6G SUMMIT)\",\"volume\":\"2016 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd 6G Wireless Summit (6G SUMMIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/6GSUMMIT49458.2020.9083799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd 6G Wireless Summit (6G SUMMIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/6GSUMMIT49458.2020.9083799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

光无线通信(OWC)及其解决物理层安全(PLS)问题的潜力正在成为6G通信系统的重要研究领域。本文综述了PLS在可见光通信(VLC)中的应用。然后,介绍了基于空间星座设计(SCD)的广义空间移位键控(GSSK)调制和非正交多址(NOMA)协同中继的两种新型PLS技术。在第一种技术中,通过为随机激活的发光二极管(led)适当选择预编码矩阵来增强系统的PLS。利用合法用户(Bob)在发射机(CSIT)的信道状态信息(CSI),可以最小化Bob的误码率(BER),同时显著降低潜在窃听者(eve)的误码率性能。在第二种技术中,在发射机和中继上使用均匀信号的叠加编码。在中继节点上设计安全波束形成矢量以及使用NOMA技术来增强VLC系统中的PLS。从所提议的技术的改进安全级别中获得的见解用于讨论如何通过使用VLC在下一代通信系统中进一步改进PLS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physical-Layer Security in Visible Light Communications
Optical wireless communications (OWC) and its potential to solve physical layer security (PLS) issues are becoming important research areas in 6G communications systems. In this paper, an overview of PLS in visible light communications (VLC), is presented. Then, two new PLS techniques based on generalized space shift keying (GSSK) modulation with spatial constellation design (SCD) and non-orthogonal multiple access (NOMA) cooperative relaying are introduced. In the first technique, the PLS of the system is enhanced by the appropriate selection of a precoding matrix for randomly activated light emitting diodes (LEDs). With the aid of a legitimate user's (Bob's) channel state information (CSI) at the transmitter (CSIT), the bit error ratio (BER) of Bob is minimized while the BER performance of the potential eavesdroppers (Eves) is significantly degraded. In the second technique, superposition coding with uniform signaling is used at the transmitter and relays. The design of secure beamforming vectors at the relay nodes along with NOMA techniques is used to enhance PLS in a VLC system. Insights gained from the improved security levels of the proposed techniques are used to discuss how PLS can be further improved in future generation communication systems by using VLC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards 6G: Evolution of Key Performance Indicators and Technology Trends Cellular and Wi-Fi in Unlicensed Spectrum: Competition leading to Convergence Design of a 20–80 GHz Down-Conversion Mixer for 5G Wireless Communication with 22nm CMOS A Measure of Personal Information in Mobile Data Ultra-Reliable Low-Latency Control Signaling in a Factory Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1