DCIM-GCN:有效加速图卷积网络的数字内存计算

Yikan Qiu, Yufei Ma, Wentao Zhao, Meng Wu, Le Ye, Ru Huang
{"title":"DCIM-GCN:有效加速图卷积网络的数字内存计算","authors":"Yikan Qiu, Yufei Ma, Wentao Zhao, Meng Wu, Le Ye, Ru Huang","doi":"10.1145/3508352.3549465","DOIUrl":null,"url":null,"abstract":"Computing-in-memory (CIM) is emerging as a promising architecture to accelerate graph convolutional networks (GCNs) normally bounded by redundant and irregular memory transactions. Current analog based CIM requires frequent analog and digital conversions (AD/DA) that dominate the overall area and power consumption. Furthermore, the analog non-ideality degrades the accuracy and reliability of CIM. In this work, an SRAM based digital CIM system is proposed to accelerate memory intensive GCNs, namely DCIM-GCN, which covers innovations from CIM circuit level eliminating costly AD/DA converters to architecture level addressing irregularity and sparsity of graph data. DCIM-GCN achieves 2.07×, 1.76×, and 1.89× speedup and 29.98×, 1.29×, and 3.73× energy efficiency improvement on average over CIM based PIMGCN, TARe, and PIM-GCN, respectively.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DCIM-GCN: Digital Computing-in-Memory to Efficiently Accelerate Graph Convolutional Networks\",\"authors\":\"Yikan Qiu, Yufei Ma, Wentao Zhao, Meng Wu, Le Ye, Ru Huang\",\"doi\":\"10.1145/3508352.3549465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing-in-memory (CIM) is emerging as a promising architecture to accelerate graph convolutional networks (GCNs) normally bounded by redundant and irregular memory transactions. Current analog based CIM requires frequent analog and digital conversions (AD/DA) that dominate the overall area and power consumption. Furthermore, the analog non-ideality degrades the accuracy and reliability of CIM. In this work, an SRAM based digital CIM system is proposed to accelerate memory intensive GCNs, namely DCIM-GCN, which covers innovations from CIM circuit level eliminating costly AD/DA converters to architecture level addressing irregularity and sparsity of graph data. DCIM-GCN achieves 2.07×, 1.76×, and 1.89× speedup and 29.98×, 1.29×, and 3.73× energy efficiency improvement on average over CIM based PIMGCN, TARe, and PIM-GCN, respectively.\",\"PeriodicalId\":270592,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508352.3549465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

内存计算(CIM)作为一种很有前途的架构正在兴起,用于加速通常受冗余和不规则内存事务限制的图卷积网络(GCNs)。当前基于模拟的CIM需要频繁的模拟和数字转换(AD/DA),这在总体面积和功耗方面占主导地位。此外,模拟的非理想性降低了CIM的精度和可靠性。在这项工作中,提出了一种基于SRAM的数字CIM系统来加速内存密集型gcn,即DCIM-GCN,它涵盖了从CIM电路级消除昂贵的AD/DA转换器到解决图数据不规则性和稀疏性的架构级创新。与基于CIM的PIMGCN、TARe和pimm - gcn相比,DCIM-GCN的平均速度提升了2.07倍、1.76倍和1.89倍,能效提升了29.98倍、1.29倍和3.73倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DCIM-GCN: Digital Computing-in-Memory to Efficiently Accelerate Graph Convolutional Networks
Computing-in-memory (CIM) is emerging as a promising architecture to accelerate graph convolutional networks (GCNs) normally bounded by redundant and irregular memory transactions. Current analog based CIM requires frequent analog and digital conversions (AD/DA) that dominate the overall area and power consumption. Furthermore, the analog non-ideality degrades the accuracy and reliability of CIM. In this work, an SRAM based digital CIM system is proposed to accelerate memory intensive GCNs, namely DCIM-GCN, which covers innovations from CIM circuit level eliminating costly AD/DA converters to architecture level addressing irregularity and sparsity of graph data. DCIM-GCN achieves 2.07×, 1.76×, and 1.89× speedup and 29.98×, 1.29×, and 3.73× energy efficiency improvement on average over CIM based PIMGCN, TARe, and PIM-GCN, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Squeezing Accumulators in Binary Neural Networks for Extremely Resource-Constrained Applications Numerically-Stable and Highly-Scalable Parallel LU Factorization for Circuit Simulation Towards High Performance and Accurate BNN Inference on FPGA with Structured Fine-grained Pruning RT-NeRF: Real-Time On-Device Neural Radiance Fields Towards Immersive AR/VR Rendering Design and Technology Co-optimization Utilizing Multi-bit Flip-flop Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1